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Preface

In many respects, we understand the structure of the universe better than the
workings of living cells. Scientists can calculate the age of the Sun and predict
when it will cease to shine, but we cannot explain how it is that a human being
may live for eighty years but a mouse for only two. We know the complete
genome sequences of these and many other species, but we still cannot predict
how a cell will behave if we mutate a previously unstudied gene. Stars may be
10%3 times bigger, but cells are more complex, more intricately structured, and
more astonishing products of the laws of physics and chemistry. Through hered-
ity and natural selection, operating from the beginnings of life on Earth to the
present day—that is, for about 20% of the age of the universe—living cells have
been progressively refining and extending their molecular machinery, and
recording the results of their experiments in the genetic instructions they pass
on to their progeny.

With each edition of this book, we marvel at the new information that cell
biologists have gathered in just a few years. But we are even more amazed and
daunted at the sophistication of the mechanisms that we encounter. The deeper
we probe into the cell, the more we realize how much remains to be understood.
In the days of our innocence, working on the first edition, we hailed the identi-
fication of a single protein—a signal receptor, say—as a great step forward. Now
we appreciate that each protein is generally part of a complex with many others,
working together as a system, regulating one another’s activities in subtle ways,
and held in specific positions by binding to scaffold proteins that give the chem-
ical factory a definite spatial structure. Genome sequencing has given us virtu-
ally complete molecular parts-lists for many different organisms; genetics and
biochemistry have told us a great deal about what those parts are capable of
individually and which ones interact with which others; but we have only the
most primitive grasp of the dynamics of these biochemical systems, with all
their interlocking control loops. Therefore, although there are great achieve-
ments to report, cell biologists face even greater challenges for the future.

In this edition, we have included new material on many topics, ranging from
epigenetics, histone modifications, small RNAs, and comparative genomics, to
genetic noise, cytoskeletal dynamics, cell-cycle control, apoptosis, stem cells,
and novel cancer therapies. As in previous editions, we have tried above all to
give readers a conceptual framework for the mass of information that we now
have about cells. This means going beyond the recitation of facts. The goal is to
learn how to put the facts to use—to reason, to predict, and to control the
behavior of living systems.

To help readers on the way to an active understanding, we have for the first
time incorporated end-of-chapter problems, written by John Wilson and Tim
Hunt. These emphasize a quantitative approach and the art of reasoning from
experiments. A companion volume, Molecular Biology of the Cell, Fifth Edition:
The Problems Book (ISBN 978-0-8153-4110-9), by the same authors, gives com-
plete answers to these problems and also contains more than 1700 additional
problems and solutions.

A further major adjunct to the main book is the attached Media DVD-ROM
disc. This provides hundreds of movies and animations, including many that are
new in this edition, showing cells and cellular processes in action and bringing
the text to life; the disc also now includes all the figures and tables from the main
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book, pre-loaded into PowerPoint® presentations. Other ancillaries available for
the book include a bank of test questions and lecture outlines, available to qual-
ified instructors, and a set of 200 full-color overhead transparencies.

Perhaps the biggest change is in the physical structure of the book. In an
effort to make the standard Student Edition somewhat more portable, we are
providing Chapters 21-25, covering multicellular systems, in electronic (PDF)
form on the accompanying disc, while retaining in the printed volume Chapters
1-20, covering the core of the usual cell biology curriculum. But we should
emphasize that the final chapters have been revised and updated as thoroughly
as the rest of the book and we sincerely hope that they will be read! A Reference
Edition (ISBN 978-0-8153-4111-6), containing the full set of chapters as printed
pages, is also available for those who prefer it.

Full details of the conventions adopted in the book are given in the Note to
the Reader that follows this Preface. As explained there, we have taken a drastic
approach in confronting the different rules for the writing of gene names in dif-
ferent species: throughout this book, we use the same style, regardless of
species, and often in defiance of the usual species-specific conventions.

As always, we are indebted to many people. Full acknowledgments for sci-
entific help are given separately, but we must here single out some exceptionally
important contributions: Julie Theriot is almost entirely responsible for Chap-
ters 16 (Cytoskeleton) and 24 (Pathogens, Infection, and Innate Immunity), and
David Morgan likewise for Chapter 17 (Cell Cycle). Wallace Marshall and Laura
Attardi provided substantial help with Chapters 8 and 20, respectively, as did
Maynard Olson for the genomics section of Chapter 4, Xiaodong Wang for Chap-
ter 18, and Nicholas Harberd for the plant section of Chapter 15.

We also owe a huge debt to the staff of Garland Science and others who
helped convert writers’ efforts into a polished final product. Denise Schanck
directed the whole enterprise and shepherded the wayward authors along the
road with wisdom, skill, and kindness. Nigel Orme put the artwork into its final
form and supervised the visual aspects of the book, including the back cover, with
his usual flair. Matthew McClements designed the book and its front cover.
Emma Jeffcock laid out its pages with extraordinary speed and unflappable effi-
ciency, dealing impeccably with innumerable corrections. Michael Morales man-
aged the transformation of a mass of animations, video clips, and other materi-
als into a user-friendly DVD-ROM. Eleanor Lawrence and Sherry Granum
updated and enlarged the glossary. Jackie Harbor and Sigrid Masson kept us orga-
nized. Adam Sendroff kept us aware of our readers and their needs and reactions.
Marjorie Anderson, Bruce Goatly, and Sherry Granum combed the text for obscu-
rities, infelicities, and errors. We thank them all, not only for their professional
skill and dedication and for efficiency far surpassing our own, but also for their
unfailing helpfulness and friendship: they have made it a pleasure to work on the
book.

Lastly, and with no less gratitude, we thank our spouses, families, friends
and colleagues. Without their patient, enduring support, we could not have pro-
duced any of the editions of this book.
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A Note to the Reader

Structure of the Book

Although the chapters of this book can be read independently of one another,
they are arranged in a logical sequence of five parts. The first three chapters of
Part I cover elementary principles and basic biochemistry. They can serve either
as an introduction for those who have not studied biochemistry or as a refresher
course for those who have.

Part I1 deals with the storage, expression and transmission of genetic infor-
mation.

Part III deals with the principles of the main experimental methods for
investigating cells. It is not necessary to read these two chapters in order to
understand the later chapters, but a reader will find it a useful reference.

Part IV discusses the internal organization of the cell.

Part V follows the behavior of cells in multicellular systems, starting with
cellcell junctions and extracellular matrix and concluding with two chapters on
the immune system. Chapters 21-25 can be found on the Media DVD-ROM
which is packaged with each book, providing increased portability for students.

End-of-Chapter Problems

A selection of problems, written by John Wilson and Tim Hunt, now appears in
the text at the end of each chapter. The complete solutions to these problems
can be found in Molecular Biology of the Cell, Fifth Edition: The Problems Book.

References

A concise list of selected references is included at the end of each chapter. These
are arranged in alphabetical order under the main chapter section headings.
These references frequently include the original papers in which important dis-
coveries were first reported. Chapter 8 includes several tables giving the dates of
crucial developments along with the names of the scientists involved. Elsewhere
in the book the policy has been to avoid naming individual scientists.

Media Codes

Media codes are integrated throughout the text to indicate when relevant videos
and animations are available on the DVD-ROM. The four-letter codes are
enclosed in brackets and highlighted in color, like this <ATCG>. The interface for
the Cell Biology Interactive media player on the DVD-ROM contains a window
where you enter the 4-letter code. When the code is typed into the interface, the
corresponding media item will load into the media player.

Glossary Terms

Throughout the book, boldface type has been used to highlight key terms at the
point in a chapter where the main discussion of them occurs. Italicis used to set
off important terms with a lesser degree of emphasis. At the end of the book is
the expanded glossary, covering technical terms that are part of the common
currency of cell biology; it is intended as a first resort for a reader who encoun-
ters an unfamiliar term used without explanation.

Nomenclature for Genes and Proteins

Each species has its own conventions for naming genes; the only common fea-
ture is that they are always set in italics. In some species (such as humans), gene
names are spelled out all in capital letters; in other species {(such as zebrafish),
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case and rest in lower case; or (as in Drosophila) with different combinations of
upper and lower case, according to whether the first mutant allele to be discov-
ered gave a dominant or recessive phenotype. Conventions for naming protein
products are equally varied.

This typographical chaos drives everyone crazy. It is not just tiresome and
absurd; it is also unsustainable. We cannot independently define a fresh con-
vention for each of the next few million species whose genes we may wish to
study. Moreover, there are many occasions, especially in a book such as this,
where we need to refer to a gene generically, without specifying the mouse ver-
sion, the human version, the chick version, or the hippopotamus version,
because they are all equivalent for the purposes of the discussion. What con-
vention then should we use?

We have decided in this book to cast aside the conventions for individual
species and follow a uniform rule: we write all gene names, like the names of peo-
ple and places, with the first letter in upper case and the rest in lower case, but all
in italics, thus: Apc, Bazooka, Cdc2, Dishevelled, Egll. The corresponding protein,
where it is named after the gene, will be written in the same way, but in roman
rather than italic letters: Apc, Bazooka, Cdc2, Dishevelled, Egll. When it is neces-
sary to specify the organism, this can be done with a prefix to the gene name,

For completeness, we list a few further details of naming rules that we shall
follow. In some instances an added letter in the gene name is traditionally used
to distinguish between genes that are related by function or evolution; for those
genes we put that letter in upper case if it is usual to do so (LacZ, RecA, HoxA4).
We use no hyphen to separate added letters or numbers from the rest of the
name. Proteins are more of a problem. Many of them have names in their own
right, assigned to them before the gene was named. Such protein names take
many forms, although most of them traditionally begin with a lower-case letter
(actin, hemoglobin, catalase), like the names of ordinary substances (cheese,
nylon), unless they are acronyms (such as GFP, for Green Fluorescent Protein, or
BMP4, for Bone Morphogenetic Protein #4). To force all such protein names into
a uniform style would do too much violence to established usages, and we shall
simply write them in the traditional way (actin, GFP, etc.). For the corresponding
gene names in all these cases, we shall nevertheless follow our standard rule:
Actin, Hemoglobin, Catalase, Bmp4, Gfp. Occasionally in our book we need to
highlight a protein name by setting it in italics for emphasis; the intention will
generally be clear from the context.

For those who wish to know them, the Table below shows some of the offi-
cial conventions for individual species—conventions that we shall mostly vio-
late in this book, in the manner shown.

Hoxa4

Mouse Hoxa4
Bmp4 BMP4
integrin o1, Itgo1 integrin o1
Human HOXA4 HOXA4
Zebrafish cyclops, cyc Cyclops, Cyc
Caenorhabditis unc-6 UNC-6
Drosophila sevenless, sev (named Sevenless, SEV
after recessive mutant
phenotype)
Deformed, Dfd (named  Deformed, DFD
after dominant mutant
phenotype)
Yeast
Saccharomyces cerevisiae (budding yeast) ~ CDC28 Cdc28, Cdc28p
Schizosaccharomyces pombe (fission yeast)  Cdc2 Cdc2, Cde2p
Arabidopsis GAl GAI
E. coli uvrA UvrA

Bmp4
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Ancillaries

Molecular Biology of the Cell, Fifth Edition: The Problems Book

by John Wilson and Tim Hunt (ISBN: 978-0-8153-4110-9)

The Problems Book is designed to help students appreciate the ways in which
experiments and simple calculations can lead to an understanding of how cells
work. It provides problems to accompany Chapters 1-20 of Molecular Biology of
the Cell. Each chapter of problems is divided into sections that correspond to
those of the main textbook and review key terms, test for understanding basic
concepts, and pose research-based problems. Molecular Biology of the Cell, Fifth
Edition: The Problems Book should be useful for homework assignments and as
a basis for class discussion. It could even provide ideas for exam questions. Solu-
tions for all of the problems are provided on the CD-ROM which accompanies
the book. Solutions for the end-of-chapter problems in the main textbook are
also found in The Problems Book.

MBoC5 Media DVD-ROM

The DVD included with every copy of the book contains the figures, tables, and
micrographs from the book, pre-loaded into PowerPoint® presentations, one for
each chapter. A separate folder contains individual versions of each figure, table,
and micrograph in JPEG format. The panels are available in PDF format. There
are also over 125 videos, animations, molecular structure tutorials, and high-res-
olution micrographs on the DVD. The authors have chosen to include material
that not only reinforces basic concepts but also expands the content and scope
of the book. The multimedia can be accessed either as individual files or through
the Cell Biology Interactive media player. As discussed above, the media player
has been programmed to work with the Media Codes integrated throughout the
book. A complete table of contents and overview of all electronic resources is
contained in the MBoC5 Media Viewing Guide, a PDF file located on the root
level of the DVD-ROM and in the Appendix of the media player. The DVD-ROM
also contains Chapters 21-25 which cover multicellular systems. The chapters
are in PDF format and can be easily printed or searched using Adobe® Acrobat®
Reader or other PDF software.

Teaching Supplements
Upon request, teaching supplements for Molecular Biology of the Cell are avail-
able to qualified instructors.

MBoC5 Transparency Set
Provides 200 full-color overhead acetate transparencies of the most important
figures from the book.

MBoCS5 Test Questions

A selection of test questions will be available. Written by Kirsten Benjamin
(Amyris Biotechnologies, Emeryville, California) and Linda Huang (University of
Massachusetts, Boston), these thought questions will test students’ understand-
ing of the chapter material.

MBoC5 Lecture Outlines
Lecture outlines created from the concept heads for the text are provided.

Garland Science Classwire™

All of the teaching supplements on the DVD-ROM (these include figures in Pow-
erPoint and JPEG format; Chapters 21-25 in PDF format; 125 videos, animations,
and movies) and the test questions and lecture outlines are available to qualified
instructors online at the Garland Science Classwire™ Web site. Garland Science
Classwire™ offers access to other instructional resources from ail of the Garland
Science textbooks, and provides free online course management tools. For addi-
tional information, please visit http://www.classwire.com/garlandscience or
e-mail science@garland.com. (Classwire is a trademark of Chalkfree, Inc.)

Adobe and Acrobat are either registered trademarks or trademarks of Adobe Systems Incorporated
in the United States and/or other countries

PowerPoint is either a registered trademark or trademark of Microsoft Corporation in the United
States and/or other countries
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Chapter 1

Cells and Genomes

The surface of our planet is populated by living things—curious, intricately
organized chemical factories that take in matter from their surroundings and
use these raw materials to generate copies of themselves. The living organisms
appear extraordinarily diverse. What could be more different than a tiger and a
piece of seaweed, or a bacterium and a tree? Yet our ancestors, knowing nothing
of cells or DNA, saw that all these things had something in common. They called
that something “life,” marveled at it, struggled to define it, and despaired of
explaining what it was or how it worked in terms that relate to nonliving matter.

The discoveries of the past century have not diminished the marvel—quite
the contrary. But they have lifted away the mystery as to the nature of life. We can
now see that all living things are made of cells, and that these units of living mat-
ter all share the same machinery for their most basic functions. Living things,
though infinitely varied when viewed from the outside, are fundamentally simi-
lar inside. The whole of biology is a counterpoint between the two themes:
astonishing variety in individual particulars; astonishing constancy in funda-
mental mechanisms. In this first chapter we begin by outlining the universal fea-
tures common to all life on our planet. We then survey, briefly, the diversity of
cells. And we see how, thanks to the common code in which the specifications
for all living organisms are written, it is possible to read, measure, and decipher
these specifications to achieve a coherent understanding of all the forms of life,
from the smallest to the greatest.

THE UNIVERSAL FEATURES OF CELLS ON EARTH

It is estimated that there are more than 10 million—perhaps 100 million—living
species on Earth today. Each species is different, and each reproduces itself
faithfully, yielding progeny that belong to the same species: the parent organism
hands down information specifying, in extraordinary detail, the characteristics
that the offspring shall have. This phenomenon of heredity is central to the def-
inition of life: it distinguishes life from other processes, such as the growth of a
crystal, or the burning of a candle, or the formation of waves on water, in which
orderly structures are generated but without the same type of link between the
peculiarities of parents and the peculiarities of offspring. Like the candle
flame, the living organism consumes free energy to create and maintain its
organization; but the free energy drives a hugely complex system of chemical
processes that is specified by the hereditary information.

Most living organisms are single cells; others, such as ourselves, are vast
multicellular cities in which groups of cells perform specialized functions and
are linked by intricate systems of communication. But in all cases, whether we
discuss the solitary bacterium or the aggregate of more than 1012 cells that form
a human body, the whole organism has been generated by cell divisions from a
single cell. The single cell, therefore, is the vehicle for the hereditary information
that defines the species (Figure 1-1). And specified by this information, the cell
includes the machinery to gather raw materials from the environment, and to
construct out of them a new cell in its own image, complete with a new copy of
the hereditary information. Nothing less than a cell has this capability.

In This Chapter

THE UNIVERSAL FEATURES 1
OF CELLS ON EARTH

THE DIVERSITY OF 11
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OF LIFE

GENETIC INFORMATION 26
IN EUCARYOTES
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(D)

Figure 1-1 The hereditary information in the fertilized egg cell determines the nature of the whole multicellular
organism. (A and B) A sea urchin egg gives rise to a sea urchin. (C and D) A mouse egg gives rise to a mouse. (E and F) An
egg of the seaweed Fucus gives rise to a Fucus seaweed. (A, courtesy of David McClay; B, courtesy of M. Gibbs, Oxford
Scientific Films; C, courtesy of Patricia Calarco, from G. Martin, Science 209:768-776, 1980. With permission from AAAS;

D, courtesy of O. Newman, Oxford Scientific Films; E and F, courtesy of Colin Brownlee.)

All Cells Store Their Hereditary Information in the Same Linear
Chemical Code (DNA)

Computers have made us familiar with the concept of information as a measur-
able quantity—a million bytes (to record a few hundred pages of text or an image
from a digital camera), 600 million for the music on a CD, and so on. They have
also made us well aware that the same information can be recorded in many dif-
ferent physical forms. As the computer world has evolved, the discs and tapes
that we used 10 years ago for our electronic archives have become unreadable on
present-day machines. Living cells, like computers, deal in information, and it is
estimated that they have been evolving and diversifying for over 3.5 billion years.
It is scarcely to be expected that they should all store their information in the
same form, or that the archives of one type of cell should be readable by the infor-
mation-handling machinery of another. And yet it is so. All living cells on Earth,
without any known exception, store their hereditary information in the form of
double-stranded molecules of DNA—long unbranched paired polymer chains,
formed always of the same four types of monomers. These monomers have nick-
names drawn from a four-letter alphabet—A, T, C, G—and they are strung
together in a long linear sequence that encodes the genetic information, just as
the sequence of 1s and 0s encodes the information in a computer file. We can take
a piece of DNA from a human cell and insert it into a bacterium, or a piece of bac-
terial DNA and insert it into a human cell, and the information will be success-
fully read, interpreted, and copied. Using chemical methods, scientists can read
out the complete sequence of monomers in any DNA molecule—extending for
millions of nucleotides—and thereby decipher the hereditary information that
each organism contains.
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All Cells Replicate Their Hereditary Information by Templated
Polymerization

The mechanisms that make life possible depend on the structure of the double-
stranded DNA molecule. Each monomer in a single DNA strand—that is, each
nucleotide—consists of two parts: a sugar (deoxyribose) with a phosphate
group attached to it, and a base, which may be either adenine (A), guanine (G),
cytosine (C) or thymine (T) (Figure 1-2). Each sugar is linked to the next via the
phosphate group, creating a polymer chain composed of a repetitive sugar-
phosphate backbone with a series of bases protruding from it. The DNA polymer
is extended by adding monomers at one end. For a single isolated strand, these
can, in principle, be added in any order, because each one links to the next in the
same way, through the part of the molecule that is the same for all of them. In
the living cell, however, DNA is not synthesized as a free strand in isolation, but
on a template formed by a preexisting DNA strand. The bases protruding from
the existing strand bind to bases of the strand being synthesized, according to a
strict rule defined by the complementary structures of the bases: A binds to T,
and C binds to G. This base-pairing holds fresh monomers in place and thereby
controls the selection of which one of the four monomers shall be added to the
growing strand next. In this way, a double-stranded structure is created, consist-
ing of two exactly complementary sequences of As, Cs, Ts, and Gs. The two
strands twist around each other, forming a double helix (Figure 1-2E).
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Figure 1-2 DNA and its building blocks. (A) DNA is made from simple subunits, called nucleotides, each consisting of a sugar-phosphate
molecule with a nitrogen-containing sidegroup, or base, attached to it. The bases are of four types (adenine, guanine, cytosine, and thymine),
corresponding to four distinct nucleotides, labeled A, G, C, and T. (B) A single strand of DNA consists of nucleotides joined together by sugar-
phosphate linkages. Note that the individual sugar-phosphate units are asymmetric, giving the backbone of the strand a definite directionality,
or polarity. This directionality guides the molecular processes by which the information in DNA is interpreted and copied in cells: the
information is always “read” in a consistent order, just as written English text is read from left to right. (C) Through templated polymerization,
the sequence of nucleotides in an existing DNA strand controls the sequence in which nucleotides are joined together in a new DNA strand;

T in one strand pairs with A in the other, and G in one strand with C in the other. The new strand has a nucleotide sequence complementary to
that of the old strand, and a backbone with opposite directionality: corresponding to the GTAA... of the original strand, it has ..TTAC.

(D) A normal DNA molecule consists of two such complementary strands. The nucleotides within each strand are linked by strong (covalent)
chemical bonds; the complementary nucleotides on opposite strands are held together more weakly, by hydrogen bonds. (E) The two strands
twist around each other to form a double helix—a robust structure that can accommodate any sequence of nucleotides without altering its
basic structure.
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The bonds between the base pairs are weak compared with the sugar-phos-
phate links, and this allows the two DNA strands to be pulled apart without
breakage of their backbones. Each strand then can serve as a template, in the
way just described, for the synthesis of a fresh DNA strand complementary to
itself—a fresh copy, that is, of the hereditary information (Figure 1-3). In differ-
ent types of cells, this process of DNA replication occurs at different rates, with
different controls to start it or stop it, and different auxiliary molecules to help it
along. But the basics are universal: DNA is the information store, and templated
polymerization is the way in which this information is copied throughout the
living world.

All Cells Transcribe Portions of Their Hereditary Information into
the Same Intermediary Form (RNA)

To carry out its information-bearing function, DNA must do more than copy
itself. It must also express its information, by letting it guide the synthesis of
other molecules in the cell. This also occurs by a mechanism that is the same
in all living organisms, leading first and foremost to the production of two other
key classes of polymers: RNAs and proteins. The process (discussed in detail in
Chapters 6 and 7) begins with a templated polymerization called transcription,
in which segments of the DNA sequence are used as templates for the synthesis
of shorter molecules of the closely related polymer ribonucleic acid, or RNA.
Later, in the more complex process of translation, many of these RNA molecules
direct the synthesis of polymers of a radically different chemical class—the pro-
teins (Figure 1-4).

In RNA, the backbone is formed of a slightly different sugar from that of
DNA—ribose instead of deoxyribose—and one of the four bases is slightly dif-
ferent—uracil (U) in place of thymine (T); but the other three bases—A, C, and
G—are the same, and all four bases pair with their complementary counterparts
in DNA—the A, U, C, and G of RNA with the T, A, G, and C of DNA. During tran-
scription, RNA monomers are lined up and selected for polymerization on a
template strand of DNA, just as DNA monomers are selected during replication.
The outcome is a polymer molecule whose sequence of nucleotides faithfully
represents a part of the cell’s genetic information, even though written in a
slightly different alphabet, consisting of RNA monomers instead of DNA
monomers.

The same segment of DNA can be used repeatedly to guide the synthesis of
many identical RNA transcripts. Thus, whereas the cell’s archive of genetic infor-
mation in the form of DNA is fixed and sacrosanct, the RNA transcripts are
mass-produced and disposable (Figure 1-5). As we shall see, these transcripts
function as intermediates in the transfer of genetic information: they mainly
serve as messenger RNA (mRNA) to guide the synthesis of proteins according to
the genetic instructions stored in the DNA.

RNA molecules have distinctive structures that can also give them other spe-
cialized chemical capabilities. Being single-stranded, their backbone is flexible,
so that the polymer chain can bend back on itself to allow one part of the

A

Figure 1-3 The copying of genetic
information by DNA replication. In this
process, the two strands of a DNA double
helix are pulled apart, and each serves as
a template for synthesis of a new
complementary strand.
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Figure 1-4 From DNA to protein.
Genetic information is read out and put
to use through a two-step process. First,
in transcription, segments of the DNA
sequence are used to guide the synthesis
of molecules of RNA. Then, in translation,
the RNA molecules are used to guide the
synthesis of molecules of protein.
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molecule to form weak bonds with another part of the same molecule. This
occurs when segments of the sequence are locally complementary: a ...GGGG...
segment, for example, will tend to associate with a ...CCCC... segment. These
types of internal associations can cause an RNA chain to fold up into a specific
shape that is dictated by its sequence (Figure 1-6). The shape of the RNA
molecule, in turn, may enable it to recognize other molecules by binding to them
selectively—and even, in certain cases, to catalyze chemical changes in the
molecules that are bound. As we see in Chapter 6, a few chemical reactions cat-
alyzed by RNA molecules are crucial for several of the most ancient and funda-
mental processes in living cells, and it has been suggested that more extensive
catalysis by RNA played a central part in the early evolution of life.

All Cells Use Proteins as Catalysts

Protein molecules, like DNA and RNA molecules, are long unbranched polymer
chains, formed by stringing together monomeric building blocks drawn from a
standard repertoire that is the same for all living cells. Like DNA and RNA, they
carry information in the form of a linear sequence of symbols, in the same way
as a human message written in an alphabetic script. There are many different
protein molecules in each cell, and—Ileaving out the water—they form most of
the cell’s mass.

The monomers of protein, the amino acids, are quite different from those of
DNA and RNA, and there are 20 types, instead of 4. Each amino acid is built
around the same core structure through which it can be linked in a standard way
to any other amino acid in the set; attached to this core is a side group that gives
each amino acid a distinctive chemical character. Each of the protein molecules,
or polypeptides, created by joining amino acids in a particular sequence folds
into a precise three-dimensional form with reactive sites on its surface (Figure

(B)

Figure 1-5 How genetic information is
broadcast for use inside the cell. Each
cell contains a fixed set of DNA
molecules—its archive of genetic
information. A given segment of this DNA
guides the synthesis of many identical
RNA transcripts, which serve as working
copies of the information stored in the
archive. Many different sets of RNA
molecules can be made by transcribing
selected parts of a long DNA sequence,
allowing each cell to use its information
store differently.

Figure 1-6 The conformation of an RNA
molecule. (A) Nucleotide pairing
between different regions of the same
RNA polymer chain causes the molecule
to adopt a distinctive shape. (B) The
three-dimensional structure of an actual
RNA molecule, from hepatitis delta virus,
that catalyzes RNA strand cleavage. The
blue ribbon represents the sugar-
phosphate backbone; the bars represent
base pairs. (B, based on A.R. Ferré
D’Amaré, K. Zhou and J.A. Doudna, Nature
395:567-574, 1998. With permission from
Macmillan Publishers Ltd.)



6 Chapter 1: Cells and Genomes
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Figure 1-7 How a protein molecule acts as catalyst for a chemical reaction.

(A) In a protein molecule the polymer chain folds up to into a specific shape
defined by its amino acid sequence. A groove in the surface of this particular
folded molecule, the enzyme lysozyme, forms a catalytic site. (B) A polysaccharide
molecule (red)—a polymer chain of sugar monomers—binds to the catalytic site
of lysozyme and is broken apart, as a result of a covalent bond-breaking reaction
(A) lysozyme catalyzed by the amino acids lining the groove.

1-7A). These amino acid polymers thereby bind with high specificity to other
molecules and act as enzymes to catalyze reactions that make or break covalent
bonds. In this way they direct the vast majority of chemical processes in the cell
(Figure 1-7B). Proteins have many other functions as well—maintaining struc-
tures, generating movements, sensing signals, and so on—each protein
molecule performing a specific function according to its own genetically speci-
fied sequence of amino acids. Proteins, above all, are the molecules that put the
cell’s genetic information into action.

Thus, polynucleotides specify the amino acid sequences of proteins. Pro-
teins, in turn, catalyze many chemical reactions, including those by which new
DNA molecules are synthesized, and the genetic information in DNA is used to
make both RNA and proteins. This feedback loop is the basis of the autocatalytic,
self-reproducing behavior of living organisms (Figure 1-8).

All Cells Translate RNA into Protein in the Same Way

The translation of genetic information from the 4-letter alphabet of polynu-
cleotides into the 20-letter alphabet of proteins is a complex process. The rules
of this translation seem in some respects neat and rational, in other respects
strangely arbitrary, given that they are (with minor exceptions) identical in all
living things. These arbitrary features, it is thought, reflect frozen accidents in
the early history of life—chance properties of the earliest organisms that were
passed on by heredity and have become so deeply embedded in the constitution
of all living cells that they cannot be changed without disastrous effects.

The information in the sequence of a messenger RNA molecule is read out in
groups of three nucleotides at a time: each triplet of nucleotides, or codon, speci-
fies (codes for) a single amino acid in a corresponding protein. Since there are 64
(=4 x4 x4) possible codons, all of which occur in nature, but only 20 amino acids,
there are necessarily many cases in which several codons correspond to the same
amino acid. The code is read out by a special class of small RNA molecules, the
transfer RNAs (tRNAs). Each type of tRNA becomes attached at one end to a spe-
cific amino acid, and displays at its other end a specific sequence of three
nucleotides—an anticodon—that enables it to recognize, through base-pairing, a
particular codon or subset of codons in mRNA (Figure 1-9).

For synthesis of protein, a succession of tRNA molecules charged with their
appropriate amino acids have to be brought together with an mRNA molecule and
matched up by base-pairing through their anticodons with each of its successive
codons. The amino acids then have to be linked together to extend the growing
protein chain, and the tRNAs, relieved of their burdens, have to be released. This
whole complex of processes is carried out by a giant multimolecular machine,
the ribosome, formed of two main chains of RNA, called ribosomal RNAs
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(rRNAs), and more than 50 different proteins. This evolutionarily ancient molec-
ular juggernaut latches onto the end of an mRNA molecule and then trundles
along it, capturing loaded tRNA molecules and stitching together the amino
acids they carry to form a new protein chain (Figure 1-10).

The Fragment of Genetic Information Corresponding to One
Protein Is One Gene

DNA molecules as a rule are very large, containing the specifications for thou-
sands of proteins. Individual segments of the entire DNA sequence are tran-
scribed into separate mRNA molecules, with each segment coding for a different
protein. Each such DNA segment represents one gene. A complication is that
RNA molecules transcribed from the same DNA segment can often be processed
in more than one way, so as to give rise to a set of alternative versions of a pro-
tein, especially in more complex cells such as those of plants and animals. A
gene therefore is defined, more generally, as the segment of DNA sequence cor-
responding to a single protein or set of alternative protein variants (or to a sin-
gle catalytic or structural RNA molecule for those genes that produce RNA but
not protein).

In all cells, the expression of individual genes is regulated: instead of manufac-
turing its full repertoire of possible proteins at full tilt all the time, the cell adjusts
the rate of transcription and translation of different genes independently, accord-
ing to need. Stretches of regulatory DNA are interspersed among the segments
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Figure 1-8 Life as an autocatalytic
process. Polynucleotides (nucleotide
polymers) and proteins (amino acid
polymers) provide the sequence
information and the catalytic functions
that serve—through a complex set of
chemical reactions—to bring about the
synthesis of more polynucleotides and
proteins of the same types.

Figure 1-9 Transfer RNA. (A) A tRNA
molecule specific for the amino acid
tryptophan. One end of the tRNA
molecule has tryptophan attached to it,
while the other end displays the triplet
nucleotide sequence CCA (its anticodon),
which recognizes the tryptophan codon
in messenger RNA molecules. (B) The
three-dimensional structure of the
tryptophan tRNA molecule. Note that the
codon and the anticodon in (A) are in
antiparallel orientations, like the two
strands in a DNA double helix (see Figure
1-2), so that the sequence of the
anticodon in the tRNA is read from right
to left, while that of the codon in the
mMRNA is read from left to right.
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8 Chapter 1: Cells and Genomes

Figure 1-10 A ribosome at work. (A) The diagram shows how a ribosome
moves along an mRNA molecule, capturing tRNA molecules that match the
codons in the mRNA and using them to join amino acids into a protein
chain. The mRNA specifies the sequence of amino acids. (B) The three-
dimensional structure of a bacterial ribosome (pale green and blue), moving
along an mRNA molecule (orange beads), with three tRNA molecules
(vellow, green, and pink) at different stages in their process of capture and
release. The ribosome is a giant assembly of more than 50 individual
protein and RNA molecules. (B, courtesy of Joachim Frank, Yanhong Li and
Rajendra Agarwal.)

that code for protein, and these noncoding regions bind to special protein
molecules that control the local rate of transcription (Figure 1-11). Other non-
coding DNA is also present, some of it serving, for example, as punctuation,
defining where the information for an individual protein begins and ends. The
quantity and organization of the regulatory and other noncoding DNA vary
widely from one class of organisms to another, but the basic strategy is univer-
sal. In this way, the genome of the cell—that is, the total of its genetic informa-
tion as embodied in its complete DNA sequence—dictates not only the nature of
the cell’s proteins, but also when and where they are to be made.

Life Requires Free Energy

Aliving cell is a dynamic chemical system, operating far from chemical equilib-
rium. For a cell to grow or to make a new cell in its own image, it must take in
free energy from the environment, as well as raw materials, to drive the neces-
sary synthetic reactions. This consumption of free energy is fundamental to life.
When it stops, a cell decays towards chemical equilibrium and soon dies.
Genetic information is also fundamental to life. Is there any connection? The
answer is yes: free energy is required for the propagation of information. For
example, to specify one bit of information—that is, one yes/no choice between
two equally probable alternatives—costs a defined amount of free energy that
can be calculated. The quantitative relationship involves some deep reasoning
and depends on a precise definition of the term “free energy,” discussed in
Chapter 2. The basic idea, however, is not difficult to understand intuitively.
Picture the molecules in a cell as a swarm of objects endowed with thermal
energy, moving around violently at random, buffeted by collisions with one
another. To specify genetic information—in the form of a DNA sequence, for
example—molecules from this wild crowd must be captured, arranged in a spe-
cific order defined by some preexisting template, and linked together in a fixed
relationship. The bonds that hold the molecules in their proper places on the
template and join them together must be strong enough to resist the disorder-
ing effect of thermal motion. The process is driven forward by consumption of
free energy, which is needed to ensure that the correct bonds are made, and
made robustly. In the simplest case, the molecules can be compared with
spring-loaded traps, ready to snap into a more stable, lower-energy attached
state when they meet their proper partners; as they snap together into the
bonded arrangement, their available stored energy—their free energy—like the
energy of the spring in the trap, is released and dissipated as heat. In a cell, the
chemical processes underlying information transfer are more complex, but the
same basic principle applies: free energy has to be spent on the creation of order.
To replicate its genetic information faithfully, and indeed to make all its
complex molecules according to the correct specifications, the cell therefore
requires free energy, which has to be imported somehow from the surroundings.

All Cells Function as Biochemical Factories Dealing with the Same
Basic Molecular Building Blocks

Because all cells make DNA, RNA, and protein, and these macromolecules are
composed of the same set of subunits in every case, all cells have to contain and
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THE UNIVERSAL FEATURES OF CELLS ON EARTH

manipulate a similar collection of small molecules, including simple sugars,
nucleotides, and amino acids, as well as other substances that are universally
required for their synthesis. All cells, for example, require the phosphorylated
nucleotide ATP (adenosine triphosphate) as a building block for the synthesis of
DNA and RNA; and all cells also make and consume this molecule as a carrier of
free energy and phosphate groups to drive many other chemical reactions.

Although all cells function as biochemical factories of a broadly similar type,
many of the details of their small-molecule transactions differ, and it is not as
easy as it is for the informational macromolecules to point out the features that
are strictly universal. Some organisms, such as plants, require only the simplest
of nutrients and harness the energy of sunlight to make from these almost all
their own small organic molecules; other organisms, such as animals, feed on
living things and obtain many of their organic molecules ready-made. We return
to this point below.

All Cells Are Enclosed in a Plasma Membrane Across Which
Nutrients and Waste Materials Must Pass

There is, however, at least one other feature of cells that is universal: each one is
enclosed by a membrane—the plasma membrane. This container acts as a
selective barrier that enables the cell to concentrate nutrients gathered from its
environment and retain the products it synthesizes for its own use, while excret-
ing its waste products. Without a plasma membrane, the cell could not maintain
its integrity as a coordinated chemical system.

The molecules forming this membrane have the simple physico-chemical
property of being amphiphilic—that is, consisting of one part that is hydropho-
bic (water-insoluble) and another part that is hydrophilic (water-soluble). Such
molecules placed in water aggregate spontaneously, arranging their hydropho-
bic portions to be as much in contact with one another as possible to hide them
from the water, while keeping their hydrophilic portions exposed. Amphiphilic
molecules of appropriate shape, such as the phospholipid molecules that com-
prise most of the plasma membrane, spontaneously aggregate in water to form a
bilayer that creates small closed vesicles (Figure 1-12). The phenomenon can be
demonstrated in a test tube by simply mixing phospholipids and water together;
under appropriate conditions, small vesicles form whose aqueous contents are
isolated from the external medium.

Although the chemical details vary, the hydrophobic tails of the predomi-
nant membrane molecules in all cells are hydrocarbon polymers
(-CH2—-CH2-CH,-), and their spontaneous assembly into a bilayered vesicle is
but one of many examples of an important general principle: cells produce
molecules whose chemical properties cause them to self-assemble into the
structures that a cell needs.

The cell boundary cannot be totally impermeable. If a cell is to grow and
reproduce, it must be able to import raw materials and export waste across its
plasma membrane. All cells therefore have specialized proteins embedded in
their membrane that transport specific molecules from one side to the other
(Figure 1-13). Some of these membrane transport proteins, like some of the pro-
teins that catalyze the fundamental small-molecule reactions inside the cell,

Figure 1-11 Gene regulation by protein binding to regulatory DNA.

(A) A diagram of a small portion of the genome of the bacterium Escherichia
coli, containing genes (called Lacl, LacZ, LacY, and LacA) coding for four
different proteins. The protein-coding DNA segments (red) have regulatory
and other noncoding DNA segments (yellow) between them. (B) An electron
micrograph of DNA from this region, with a protein molecule (encoded by
the Lacl gene) bound to the regulatory segment; this protein controls the
rate of transcription of the LacZ, LacY, and LacA genes. (C) A drawing of the
structures shown in (B). (B, courtesy of Jack Griffith.)

site of protein
binding shown

in micrograph (B)
below

Lacl

(A)

Y

LacZ

noncoding
DNA segments

LacY LacA

.
2000 nucleotide
pairs

protein bound to
regulatory segment

(@]

of DNA

segment of DNA
coding for protein



10 Chapter 1: Cells and Genomes

have been so well preserved over the course of evolution that we can recognize
the family resemblances between them in comparisons of even the most dis-
tantly related groups of living organisms.

The transport proteins in the membrane largely determine which molecules
enter the cell, and the catalytic proteins inside the cell determine the reactions
that those molecules undergo. Thus, by specifying the proteins that the cell is to
manufacture, the genetic information recorded in the DNA sequence dictates
the entire chemistry of the cell; and not only its chemistry, but also its form and
its behavior, for these too are chiefly constructed and controlled by the cell’s pro-
teins.

A Living Cell Can Exist with Fewer Than 500 Genes

The basic principles of biological information transfer are simple enough, but
how complex are real living cells? In particular, what are the minimum require-
ments? We can get a rough indication by considering a species that has one of
the smallest known genomes—the bacterium Mycoplasma genitalium (Figure
1-14). This organism lives as a parasite in mammals, and its environment pro-
vides it with many of its small molecules ready-made. Nevertheless, it still has to
make all the large molecules—DNA, RNAs, and proteins—required for the basic
processes of heredity. It has only about 480 genes in its genome of 580,070
nucleotide pairs, representing 145,018 bytes of information—about as much as
it takes to record the text of one chapter of this book. Cell biology may be com-
plicated, but it is not impossibly so.

The minimum number of genes for a viable cell in today’s environments is
probably not less than 200-300, although there are only about 60 genes in the
core set shared by all living species without any known exception.

plasma membrane
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Figure 1-13 Membrane transport proteins. (A) Structure of a molecule of
bacteriorhodopsin, from the archaeon (archaebacterium) Halobacterium
halobium. This transport protein uses the energy of absorbed light to
pump protons (H* ions) out of the cell. The polypeptide chain threads to
and fro across the membrane; in several regions it is twisted into a helical
conformation, and the helical segments are arranged to form the walls of a
channel through which ions are transported. (B) Diagram of the set of
transport proteins found in the membrane of the bacterium Thermotoga
maritima. The numbers in parentheses refer to the number of different
membrane transport proteins of each type. Most of the proteins within
each class are evolutionarily related to one another and to their
counterparts in other species.
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Figure 1-12 Formation of a membrane
by amphiphilic phospholipid molecules.
These have a hydrophilic (water-loving,
phosphate) head group and a
hydrophobic (water-avoiding,
hydrocarbon) tail. At an interface
between oil and water, they arrange
themselves as a single sheet with their
head groups facing the water and their
tail groups facing the oil. When immersed
in water, they aggregate to form bilayers
enclosing aqueous compartments.




THE DIVERSITY OF GENOMES AND THE TREE OF LIFE

Figure 1-14 Mycoplasma genitalium. (A) Scanning electron micrograph
showing the irregular shape of this small bacterium, reflecting the lack of
any rigid wall. (B) Cross section (transmission electron micrograph) of a
Mycoplasma cell. Of the 477 genes of Mycoplasma genitalium, 37 code for
transfer, ribosomal, and other nonmessenger RNAs. Functions are known,
or can be guessed, for 297 of the genes coding for protein: of these,

153 are involved in replication, transcription, translation, and related
processes involving DNA, RNA, and protein; 29 in the membrane and
surface structures of the cell; 33 in the transport of nutrients and other
molecules across the membrane; 71 in energy conversion and the
synthesis and degradation of small molecules; and 11 in the regulation of
cell division and other processes. (A, from S. Razin et al., Infect. Immun.
30:538-546, 1980. With permission from the American Society for
Microbiology; B, courtesy of Roger Cole, in Medical Microbiology, 4th ed.
[S. Baron ed.]. Galveston: University of Texas Medical Branch, 1996.)

Summary

Living organisms reproduce themselves by transmitting genetic information to their
progeny. The individual cell is the minimal self-reproducing unit, and is the vehicle for
transmission of the genetic information in all living species. Every cell on our planet
stores its genetic information in the same chemical form—as double-stranded DNA. The
cell replicates its information by separating the paired DNA strands and using each as
a template for polymerization to make a new DNA strand with a complementary
sequence of nucleotides. The same strategy of templated polymerization is used to
transcribe portions of the information from DNA into molecules of the closely related
polymer, RNA. These in turn guide the synthesis of protein molecules by the more com-
plex machinery of translation, involving a large multimolecular machine, the ribo-
some, which is itself composed of RNA and protein. Proteins are the principal catalysts
for almost all the chemical reactions in the cell; their other functions include the selec-
tive import and export of small molecules across the plasma membrane that forms the
cell’s boundary. The specific function of each protein depends on its amino acid
sequence, which is specified by the nucleotide sequence of a corresponding segment of
the DNA—the gene that codes for that protein. In this way, the genome of the cell deter-
mines its chemistry; and the chemistry of every living cell is fundamentally similar,
because it must provide for the synthesis of DNA, RNA, and protein. The simplest
known cells have just under 500 genes.

THE DIVERSITY OF GENOMES AND THE TREE
OF LIFE

The success of living organisms based on DNA, RNA, and protein, out of the
infinitude of other chemical forms that we might conceive of, has been spectac-
ular. They have populated the oceans, covered the land, infiltrated the Earth’s
crust, and molded the surface of our planet. Our oxygen-rich atmosphere, the
deposits of coal and oil, the layers of iron ores, the cliffs of chalk and limestone
and marble—all these are products, directly or indirectly, of past biological
activity on Earth.

Living things are not confined to the familiar temperate realm of land, water,
and sunlight inhabited by plants and plant-eating animals. They can be found in
the darkest depths of the ocean, in hot volcanic mud, in pools beneath the
frozen surface of the Antarctic, and buried kilometers deep in the Earth’s crust.
The creatures that live in these extreme environments are generally unfamiliar,
not only because they are inaccessible, but also because they are mostly micro-
scopic. In more homely habitats, too, most organisms are too small for us to see
without special equipment: they tend to go unnoticed, unless they cause a dis-
ease or rot the timbers of our houses. Yet microorganisms make up most of the
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12 Chapter 1: Cells and Genomes

total mass of living matter on our planet. Only recently, through new methods of
molecular analysis and specifically through the analysis of DNA sequences, have
we begun to get a picture of life on Earth that is not grossly distorted by our
biased perspective as large animals living on dry land.

In this section we consider the diversity of organisms and the relationships
among them. Because the genetic information for every organism is written in
the universal language of DNA sequences, and the DNA sequence of any given
organism can be obtained by standard biochemical techniques, it is now possi-
ble to characterize, catalogue, and compare any set of living organisms with ref-
erence to these sequences. From such comparisons we can estimate the place of
each organism in the family tree of living species—the ‘tree of life’. But before
describing what this approach reveals, we need first to consider the routes by
which cells in different environments obtain the matter and energy they require
to survive and proliferate, and the ways in which some classes of organisms
depend on others for their basic chemical needs.

Cells Can Be Powered by a Variety of Free Energy Sources

Living organisms obtain their free energy in different ways. Some, such as ani-
mals, fungi, and the bacteria that live in the human gut, get it by feeding on
other living things or the organic chemicals they produce; such organisms are
called organotrophic (from the Greek word trophe, meaning “food”). Others
derive their energy directly from the nonliving world. These fall into two
classes: those that harvest the energy of sunlight, and those that capture their
energy from energy-rich systems of inorganic chemicals in the environment
(chemical systems that are far from chemical equilibrium). Organisms of the
former class are called phototrophic (feeding on sunlight); those of the latter
are called lithotrophic (feeding on rock). Organotrophic organisms could not
exist without these primary energy converters, which are the most plentiful
form of life.

Phototrophic organisms include many types of bacteria, as well as algae and
plants, on which we—and virtually all the living things that we ordinarily see
around us—depend. Phototrophic organisms have changed the whole chem-
istry of our environment: the oxygen in the Earth’s atmosphere is a by-product
of their biosynthetic activities.

Lithotrophic organisms are not such an obvious feature of our world,
because they are microscopic and mostly live in habitats that humans do not
frequent—deep in the ocean, buried in the Earth’s crust, or in various other
inhospitable environments. But they are a major part of the living world, and are
especially important in any consideration of the history of life on Earth.

Some lithotrophs get energy from aerobic reactions, which use molecular
oxygen from the environment; since atmospheric Oz is ultimately the product of
living organisms, these aerobic lithotrophs are, in a sense, feeding on the prod-
ucts of past life. There are, however, other lithotrophs that live anaerobically, in
places where little or no molecular oxygen is present, in circumstances similar to
those that must have existed in the early days of life on Earth, before oxygen had
accumulated.

The most dramatic of these sites are the hot hydrothermal vents found deep
down on the floor of the Pacific and Atlantic Oceans, in regions where the ocean
floor is spreading as new portions of the Earth’s crust form by a gradual
upwelling of material from the Earth’s interior (Figure 1-15). Downward-perco-
lating seawater is heated and driven back upward as a submarine geyser, carry-
ing with it a current of chemicals from the hot rocks below. A typical cocktail
might include H,S, Hp, CO, Mn?*, Fe?*, Ni%*, CH,, NH4*, and phosphorus-con-
taining compounds. A dense population of microbes lives in the neighborhood
of the vent, thriving on this austere diet and harvesting free energy from reac-
tions between the available chemicals. Other organisms—clams, mussels, and
giant marine worms—in turn live off the microbes at the vent, forming an entire
ecosystem analogous to the system of plants and animals that we belong to, but
powered by geochemical energy instead of light (Figure 1-16).
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Some Cells Fix Nitrogen and Carbon Dioxide for Others

To make a living cell requires matter, as well as free energy. DNA, RNA, and protein
are composed of just six elements: hydrogen, carbon, nitrogen, oxygen, sulfur, and
phosphorus. These are all plentiful in the nonliving environment, in the Earth’s
rocks, water, and atmosphere, but not in chemical forms that allow easy incor-
poration into biological molecules. Atmospheric N, and COy, in particular, are
extremely unreactive, and a large amount of free energy is required to drive the
reactions that use these inorganic molecules to make the organic compounds
needed for further biosynthesis—that is, to fix nitrogen and carbon dioxide, so
as to make N and C available to living organisms. Many types of living cells lack
the biochemical machinery to achieve this fixation, and rely on other classes of
cells to do the job for them. We animals depend on plants for our supplies of
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Figure 1-15 The geology of a hot
hydrothermal vent in the ocean floor.
Water percolates down toward the hot
molten rock upwelling from the Earth’s
interior and is heated and driven back
upward, carrying minerals leached from
the hot rock. A temperature gradient is
set up, from more than 350°C near the
core of the vent, down to 2-3°C in the
surrounding ocean. Minerals precipitate
from the water as it cools, forming a
chimney. Different classes of organisms,
thriving at different temperatures, live in
different neighborhoods of the chimney.
A typical chimney might be a few meters
tall, with a flow rate of 1-2 m/sec.

Figure 1-16 Living organisms at a hot
hydrothermal vent. Close to the vent, at
temperatures up to about 120°C, various
lithotrophic species of bacteria and
archaea (archaebacteria) live, directly
fuelled by geochemical energy. A little
further away, where the temperature is
lower, various invertebrate animals live
by feeding on these microorganisms.
Most remarkable are the giant (2-meter)
tube worms, which, rather than feed on
the lithotrophic cells, live in symbiosis
with them: specialized organs in the
worms harbor huge numbers of
symbiotic sulfur-oxidizing bacteria. These
bacteria harness geochemical energy and
supply nourishment to their hosts, which
have no mouth, gut, or anus. The
dependence of the tube worms on the
bacteria for the harnessing of geothermal
energy is analogous to the dependence
of plants on chloroplasts for the
harnessing of solar energy, discussed
later in this chapter. The tube worms,
however, are thought to have evolved
from more conventional animals, and to
have become secondarily adapted to life
at hydrothermal vents. (Courtesy of
Dudley Foster, Woods Hole
Oceanographic Institution.)
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organic carbon and nitrogen compounds. Plants in turn, although they can fix
carbon dioxide from the atmosphere, lack the ability to fix atmospheric nitro-
gen, and they depend in part on nitrogen-fixing bacteria to supply their need for
nitrogen compounds. Plants of the pea family, for example, harbor symbiotic
nitrogen-fixing bacteria in nodules in their roots.

Living cells therefore differ widely in some of the most basic aspects of their
biochemistry. Not surprisingly, cells with complementary needs and capabilities
have developed close associations. Some of these associations, as we see below,
have evolved to the point where the partners have lost their separate identities
altogether: they have joined forces to form a single composite cell.

The Greatest Biochemical Diversity Exists Among Procaryotic
Cells

From simple microscopy, it has long been clear that living organisms can be
classified on the basis of cell structure into two groups: the eucaryotes and the
procaryotes. Eucaryotes keep their DNA in a distinct membrane-enclosed intra-
cellular compartment called the nucleus. (The name is from the Greek, meaning
“truly nucleated,” from the words eu, “well” or “truly,” and karyon, “kernel” or
“nucleus”.) Procaryotes have no distinct nuclear compartment to house their
DNA. Plants, fungi, and animals are eucaryotes; bacteria are procaryotes, as are
archaea—a separate class of procaryotic cells, discussed below.

Most procaryotic cells are small and simple in outward appearance (Figure
1-17), and they live mostly as independent individuals or in loosely organized
communities, rather than as multicellular organisms. They are typically spherical
or rod-shaped and measure a few micrometers in linear dimension. They often
have a tough protective coat, called a cell wall, beneath which a plasma mem-
brane encloses a single cytoplasmic compartment containing DNA, RNA, pro-
teins, and the many small molecules needed for life. In the electron microscope,
this cell interior appears as a matrix of varying texture without any discernible
organized internal structure (Figure 1-18).

Figure 1-18 The structure of a bacterium. (A) The bacterium Vibrio
cholerae, showing its simple internal organization. Like many other species,
Vibrio has a helical appendage at one end—a flagellum—that rotates as a
propeller to drive the cell forward. (B) An electron micrograph of a
longitudinal section through the widely studied bacterium Escherichia coli
(E. coli). This is related to Vibrio but has many flagella (not visible in this
section) distributed over its surface. The cell's DNA is concentrated in the
lightly stained region. (B, courtesy of E. Kellenberger.)
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Procaryotic cells live in an enormous variety of ecological niches, and they
are astonishingly varied in their biochemical capabilities—far more so than
eucaryotic cells. Organotrophic species can utilize virtually any type of organic
molecule as food, from sugars and amino acids to hydrocarbons and methane
gas. Phototrophic species (Figure 1-19) harvest light energy in a variety of ways,
some of them generating oxygen as a byproduct, others not. Lithotrophic species
can feed on a plain diet of inorganic nutrients, getting their carbon from CO3, and
relying on HS to fuel their energy needs (Figure 1-20)—or on Hy, or Fe?*, or ele-
mental sulfur, or any of a host of other chemicals that occur in the environment.

Many parts of this world of microscopic organisms are virtually unexplored.
Traditional methods of bacteriology have given us an acquaintance with those
species that can be isolated and cultured in the laboratory. But DNA sequence
analysis of the populations of bacteria in samples from natural habitats—such
as soil or ocean water, or even the human mouth—has opened our eyes to the
fact that most species cannot be cultured by standard laboratory techniques.
According to one estimate, at least 99% of procaryotic species remain to be
characterized.

The Tree of Life Has Three Primary Branches: Bacteria, Archaea,
and Eucaryotes

The classification of living things has traditionally depended on comparisons of
their outward appearances: we can see that a fish has eyes, jaws, backbone,
brain, and so on, just as we do, and that a worm does not; that a rosebush is
cousin to an apple tree, but less similar to a grass. As Darwin showed, we can
readily interpret such close family resemblances in terms of evolution from
common ancestors, and we can find the remains of many of these ancestors pre-
served in the fossil record. In this way, it has been possible to begin to draw a
family tree of living organisms, showing the various lines of descent, as well as
branch points in the history, where the ancestors of one group of species
became different from those of another.

When the disparities between organisms become very great, however, these
methods begin to fail. How do we decide whether a fungus is closer kin to a plant
or to an animal? When it comes to procaryotes, the task becomes harder still:
one microscopic rod or sphere looks much like another. Microbiologists have
therefore sought to classify procaryotes in terms of their biochemistry and nutri-
tional requirements. But this approach also has its pitfalls. Amid the bewildering
variety of biochemical behaviors, it is difficult to know which differences truly
reflect differences of evolutionary history.

Genome analysis has given us a simpler, more direct, and more powerful
way to determine evolutionary relationships. The complete DNA sequence of an
organism defines its nature with almost perfect precision and in exhaustive
detail. Moreover, this specification is in a digital form—a string of letters—that
can be entered straightforwardly into a computer and compared with the corre-
sponding information for any other living thing. Because DNA is subject to ran-
dom changes that accumulate over long periods of time (as we shall see shortly),
the number of differences between the DNA sequences of two organisms can
provide a direct, objective, quantitative indication of the evolutionary distance
between them.

This approach has shown that the organisms that were traditionally classed
together as “bacteria” can be as widely divergent in their evolutionary origins as
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Figure 1-19 The phototrophic
bacterium Anabaena cylindrica viewed
in the light microscope. The cells of this
species form long, multicellular filaments.
Most of the cells (labeled V) perform
photosynthesis, while others become
specialized for nitrogen fixation (labeled
H), or develop into resistant spores
(labeled S). (Courtesy of Dave G. Adams.)
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Figure 1-20 A lithotrophic bacterium.
Beggiatoa, which lives in sulfurous
environments, gets its energy by
oxidizing H,S and can fix carbon even in
the dark. Note the yellow deposits of
sulfur inside the cells. (Courtesy of Ralph
W. Wolfe.)
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Figure 1-21 The three major divisions (domains) of the living world. Note that traditionally the word
bacteria has been used to refer to procaryotes in general, but more recently has been redefined to refer to
eubacteria specifically. The tree shown here is based on comparisons of the nucleotide sequence of a
ribosomal RNA subunit in the different species, and the distances in the diagram represent estimates of the
numbers of evolutionary changes that have occurred in this molecule in each lineage (see Figure 1-22).
The parts of the tree shrouded in gray cloud represent uncertainties about details of the true pattern of
species divergence in the course of evolution: comparisons of nucleotide or amino acid sequences of
molecules other than rRNA, as well as other arguments, lead to somewhat different trees. There is general
agreement, however, as to the early divergence of the three most basic domains—the bacteria, the
archaea, and the eucaryotes.

is any procaryote from any eucaryote. It now appears that the procaryotes com-
prise two distinct groups that diverged early in the history of life on Earth, either
before the ancestors of the eucaryotes diverged as a separate group or at about
the same time. The two groups of procaryotes are called the bacteria (or eubac-
teria) and the archaea (or archaebacteria). The living world therefore has three
major divisions or domains: bacteria, archaea, and eucaryotes (Figure 1-21).

Archaea are often found inhabiting environments that we humans avoid,
such as bogs, sewage treatment plants, ocean depths, salt brines, and hot acid
springs, although they are also widespread in less extreme and more homely
environments, from soils and lakes to the stomachs of cattle. In outward appear-
ance they are not easily distinguished from bacteria. At a molecular level,
archaea seem to resemble eucaryotes more closely in their machinery for han-
dling genetic information (replication, transcription, and translation), but bac-
teria more closely in their apparatus for metabolism and energy conversion. We
discuss below how this might be explained.

Some Genes Evolve Rapidly; Others Are Highly Conserved

Both in the storage and in the copying of genetic information, random accidents
and errors occur, altering the nucleotide sequence—that is, creating mutations.
Therefore, when a cell divides, its two daughters are often not quite identical to
one another or to their parent. On rare occasions, the error may represent a
change for the better; more probably, it will cause no significant difference in the
cell’s prospects; and in many cases, the error will cause serious damage—for
example, by disrupting the coding sequence for a key protein. Changes due to
mistakes of the first type will tend to be perpetuated, because the altered cell has
an increased likelihood of reproducing itself. Changes due to mistakes of the
second type—selectively neutral changes—may be perpetuated or not: in the
competition for limited resources, it is a matter of chance whether the altered
cell or its cousins will succeed. But changes that cause serious damage lead
nowhere: the cell that suffers them dies, leaving no progeny. Through endless
repetition of this cycle of error and trial—of mutation and natural selection—
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organisms evolve: their genetic specifications change, giving them new ways to
exploit the environment more effectively, to survive in competition with others,
and to reproduce successfully.

Clearly, some parts of the genome change more easily than others in the
course of evolution. A segment of DNA that does not code for protein and has no
significant regulatory role is free to change at a rate limited only by the frequency
of random errors. In contrast, a gene that codes for a highly optimized essential
protein or RNA molecule cannot alter so easily: when mistakes occur, the faulty
cells are almost always eliminated. Genes of this latter sort are therefore highly
conserved. Through 3.5 billion years or more of evolutionary history, many fea-
tures of the genome have changed beyond all recognition; but the most highly
conserved genes remain perfectly recognizable in all living species.

These latter genes are the ones we must examine if we wish to trace family
relationships between the most distantly related organisms in the tree of life.
The studies that led to the classification of the living world into the three
domains of bacteria, archaea, and eucaryotes were based chiefly on analysis of
one of the two main RNA components of the ribosome—the so-called small-
subunit ribosomal RNA. Because translation is fundamental to all living cells,
this component of the ribosome has been well conserved since early in the his-
tory of life on Earth (Figure 1-22).

Most Bacteria and Archaea Have 1000-6000 Genes

Natural selection has generally favored those procaryotic cells that can reproduce
the fastest by taking up raw materials from their environment and replicating
themselves most efficiently, at the maximal rate permitted by the available food
supplies. Small size implies a large ratio of surface area to volume, thereby help-
ing to maximize the uptake of nutrients across the plasma membrane and
boosting a cell’s reproductive rate.

Presumably for these reasons, most procaryotic cells carry very little super-
fluous baggage; their genomes are small, with genes packed closely together and
minimal quantities of regulatory DNA between them. The small genome size
makes it relatively easy to determine the complete DNA sequence. We now have
this information for many species of bacteria and archaea, and a few species of
eucaryotes. As shown in Table 1-1, most bacterial and archaeal genomes con-
tain between 106 and 107 nucleotide pairs, encoding 1000-6000 genes.

A complete DNA sequence reveals both the genes an organism possesses
and the genes it lacks. When we compare the three domains of the living world,
we can begin to see which genes are common to all of them and must therefore
have been present in the cell that was ancestral to all present-day living things,
and which genes are peculiar to a single branch in the tree of life. To explain the
findings, however, we need to consider a little more closely how new genes arise
and genomes evolve.

GTTCCGGGGGGAGTATGGTTGCAAAGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGAAACCTCACCC
GCCGECTGaEEAGTACEGTCGCAAGACTGAAACTTAAAGAATTGGCGGGEEAGCACTACAACEGGTGEAGCCTGCGGTTTAATTGEATICAACGCCGGGCATCTTACCA
ACCGCCTGAGEAGTACEGCCGEAAGGTTARRACTCAAATGAATTGACGEGGGCCCGE - ACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCT
GTTCCOGGEEEAGTATEGTTGCAAAGCTGAAACTTAAAGEAATTGACGEAAGGGCACCACCAGGAGTGEAGCCTGCGGCTTAATTTGACTCAACACGGGARACCTCACEE
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human
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Figure 1-22 Genetic information conserved since the days of the last common ancestor of all living
things. A part of the gene for the smaller of the two main RNA components of the ribosome is shown. (The
complete molecule is about 1500-1900 nucleotides long, depending on species.) Corresponding segments
of nucleotide sequence from an archaean (Methanococcus jannaschii), a bacterium (Escherichia coli) and a
eucaryote (Homo sapiens) are aligned. Sites where the nucleotides are identical between species are
indicated by a vertical line; the human sequence is repeated at the bottom of the alignment so that all
three two-way comparisons can be seen. A dot halfway along the E. coli sequence denotes a site where a
nucleotide has been either deleted from the bacterial lineage in the course of evolution, or inserted in the
other two lineages. Note that the sequences from these three organisms, representative of the three
domains of the living world, all differ from one another to a roughly similar degree, while still retaining

unmistakable similarities.



18 Chapter 1: Cells and Genomes

Table 1-1 Some Genomes That Have Been Completely Sequenced

BACTERIA
Mycoplasma genitalium has one of the smallest of all human genital tract 580 468
known cell genomes
Synechocystis sp. photosynthetic, oxygen-generating  lakes and streams 3573 3168
(cyanobacterium)
Escherichia coli laboratory favorite human gut 4639 4289
Helicobacter pylori causes stomach ulcers and human stomach 1667 1590
predisposes to stomach cancer
Bacillus anthracis causes anthrax soil 5227 5634
Aquifex aeolicus lithotrophic; lives at high hydrothermal vents 1551 1544
temperatures
Streptomyces coelicolor source of antibiotics; giant genome  soil 8667 7825
Treponema pallidum spirochete; causes syphilis human tissues 1138 1041
Rickettsia prowazekii bacterium most closely related to lice and humans 111 834
mitochondria; causes typhus (intracellular parasite)
Thermotoga maritima organotrophic; lives at very high hydrothermal vents 1860 1877
temperatures
ARCHAEA
Methanococcus jannaschii lithotrophic, anaerobic, hydrothermal vents 1664 1750
methane-producing
Archaeoglobus fulgidus lithotrophic or organotrophic, hydrothermal vents 2178 2493
anaerobic, sulfate-reducing
Nanoarchaeum equitans smallest known archaean; anaerobic; hydrothermal and 491 552
parasitic on another, larger volcanic hot vents
archaean
EUCARYOTES
Saccharomyces cerevisiae minimal model eucaryote grape skins, beer 12,069 ~6300
(budding yeast)
Arabidopsis thaliana model organism for flowering soil and air ~142,000 ~26,000
(Thale cress) plants
Caenorhabditis elegans simple animal with perfectly soil ~97,000 ~20,000
(nematode worm) predictable development
Drosophila melanogaster key to the genetics of animal rotting fruit ~137,000 ~14,000
(fruit fly) development
Homo sapiens (human) most intensively studied mammal houses ~3,200,000 ~24,000

Genome size and gene number vary between strains of a single species, especially for bacteria and archaea. The table shows data for particular
strains that have been sequenced. For eucaryotes, many genes can give rise to several alternative variant proteins, so that the total number of
proteins specified by the genome is substantially greater than the number of genes.

New Genes Are Generated from Preexisting Genes

The raw material of evolution is the DNA sequence that already exists: there is
no natural mechanism for making long stretches of new random sequence. In
this sense, no gene is ever entirely new. Innovation can, however, occur in sev-
eral ways (Figure 1-23):

1.  Intragenic mutation: an existing gene can be modified by changes in its
DNA sequence, through various types of error that occur mainly in the pro-
cess of DNA replication.

2. Gene duplication: an existing gene can be duplicated so as to create a pair
of initially identical genes within a single cell; these two genes may then
diverge in the course of evolution.
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3. Segment shuffling: two or more existing genes can be broken and rejoined
to make a hybrid gene consisting of DNA segments that originally
belonged to separate genes.

4.  Horizontal (intercellular) transfer: a piece of DNA can be transferred from
the genome of one cell to that of another—even to that of another species.
This process is in contrast with the usual vertical transfer of genetic infor-
mation from parent to progeny.

Each of these types of change leaves a characteristic trace in the DNA
sequence of the organism, providing clear evidence that all four processes have
occurred. In later chapters we discuss the underlying mechanisms, but for the
present we focus on the consequences.

Gene Duplications Give Rise to Families of Related Genes Within a
Single Cell

A cell duplicates its entire genome each time it divides into two daughter cells.
However, accidents occasionally result in the inappropriate duplication of just
part of the genome, with retention of original and duplicate segments in a single
cell. Once a gene has been duplicated in this way, one of the two gene copies is
free to mutate and become specialized to perform a different function within the
same cell. Repeated rounds of this process of duplication and divergence, over
many millions of years, have enabled one gene to give rise to a family of genes
that may all be found within a single genome. Analysis of the DNA sequence of
procaryotic genomes reveals many examples of such gene families: in Bacillus
subtilis, for example, 47% of the genes have one or more obvious relatives (Fig-
ure 1-24).

When genes duplicate and diverge in this way, the individuals of one species
become endowed with multiple variants of a primordial gene. This evolutionary
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Figure 1-23 Four modes of genetic
innovation and their effects on the DNA
sequence of an organism. A special form
of horizontal transfer occurs when two
different types of cells enter into a
permanent symbiotic association. Genes
from one of the cells then may be
transferred to the genome of the other,
as we shall see below when we discuss
mitochondria and chloroplasts.



20 Chapter 1: Cells and Genomes

283 genes in families with
38-77 gene members

764 genes in families with
4-19 gene members \

w»

/

568 genes in families
with 2 gene members

2126 genes with

. s no family relationship
273 genes in families

with 3 gene members

process has to be distinguished from the genetic divergence that occurs when
one species of organism splits into two separate lines of descent at a branch
point in the family tree—when the human line of descent became separate from
that of chimpanzees, for example. There, the genes gradually become different
in the course of evolution, but they are likely to continue to have corresponding
functions in the two sister species. Genes that are related by descent in this
way—that is, genes in two separate species that derive from the same ancestral
gene in the last common ancestor of those two species—are called orthologs.
Related genes that have resulted from a gene duplication event within a single
genome—and are likely to have diverged in their function—are called paralogs.
Genes that are related by descent in either way are called homologs, a general
term used to cover both types of relationship (Figure 1-25).

The family relationships between genes can become quite complex (Figure
1-26). For example, an organism that possesses a family of paralogous genes (for
example, the seven hemoglobin genes o, B, v, 3, €, {, and 6) may evolve into two
separate species (such as humans and chimpanzees) each possessing the entire
set of paralogs. All 14 genes are homologs, with the human hemoglobin o orthol-
ogous to the chimpanzee hemoglobin o, but paralogous to the human or chim-
panzee hemoglobin B, and so on. Moreover, the vertebrate hemoglobins (the
oxygen-binding proteins of blood) are homologous to the vertebrate myo-
globins (the oxygen-binding proteins of muscle), as well as to more distant
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Figure 1-25 Paralogous genes and orthologous genes: two types of gene
homology based on different evolutionary pathways. (A) and (B) The most
basic possibilities. (C) A more complex pattern of events that can occur.

Figure 1-24 Families of evolutionarily
related genes in the genome of Bacillus
subtilis. The biggest family consists of
77 genes coding for varieties of ABC
transporters—a class of membrane
transport proteins found in all three
domains of the living world. (Adapted
from F. Kunst et al., Nature 390:249-256,
1997. With permission from Macmillan
Publishers Ltd.)
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genes that code for oxygen-binding proteins in invertebrates, plants, fungi, and
bacteria. From the DNA sequences, it is usually easy to recognize that two genes
in different species are homologous; it is much more difficult to decide, without
other information, whether they stand in the precise evolutionary relationship
of orthologs.

Genes Can Be Transferred Between Organisms, Both in the
Laboratory and in Nature

Procaryotes also provide examples of the horizontal transfer of genes from one
species of cell to another. The most obvious tell-tale signs are sequences recog-
nizable as being derived from bacterial viruses, also called bacteriophages (Figure
1-27). Viruses are not themselves living cells but can act as vectors for gene
transfer: they are small packets of genetic material that have evolved as parasites
on the reproductive and biosynthetic machinery of host cells. They replicate in
one cell, emerge from it with a protective wrapping, and then enter and infect
another cell, which may be of the same or a different species. Often, the infected
cell will be killed by the massive proliferation of virus particles inside it; but
sometimes, the viral DNA, instead of directly generating these particles, may per-
sist in its host for many cell generations as a relatively innocuous passenger,
either as a separate intracellular fragment of DNA, known as a plasmid, or as a
sequence inserted into the cell’s regular genome. In their travels, viruses can acci-
dentally pick up fragments of DNA from the genome of one host cell and ferry
them into another cell. Such transfers of genetic material frequently occur in pro-
caryotes, and they can also occur between eucaryotic cells of the same species.
Horizontal transfers of genes between eucaryotic cells of different species
are very rare, and they do not seem to have played a significant part in eucary-
ote evolution (although massive transfers from bacterial to eucaryotic genomes
have occurred in the evolution of mitochondria and chloroplasts, as we discuss
below). In contrast, horizontal gene transfers occur much more frequently
between different species of procaryotes. Many procaryotes have a remarkable
capacity to take up even nonviral DNA molecules from their surroundings and
thereby capture the genetic information these molecules carry. By this route, or
by virus-mediated transfer, bacteria and archaea in the wild can acquire genes
from neighboring cells relatively easily. Genes that confer resistance to an
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Figure 1-26 A complex family of
homologous genes. This diagram shows
the pedigree of the hemoglobin (Hb),
myoglobin, and globin genes of human,
chick, shark, and Drosophila. The lengths
of the horizontal lines represent the
amount of divergence in amino acid
sequence.
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antibiotic or an ability to produce a toxin, for example, can be transferred from
species to species and provide the recipient bacterium with a selective advan-
tage. In this way, new and sometimes dangerous strains of bacteria have been
observed to evolve in the bacterial ecosystems that inhabit hospitals or the var-
ious niches in the human body. For example, horizontal gene transfer is respon-
sible for the spread, over the past 40 years, of penicillin-resistant strains of Neis-
seria gonorrheae, the bacterium that causes gonorrhea. On a longer time scale,
the results can be even more profound; it has been estimated that at least 18%
of all of the genes in the present-day genome of E. coli have been acquired by
horizontal transfer from another species within the past 100 million years.

Sex Results in Horizontal Exchanges of Genetic Information
Within a Species

Horizontal exchanges of genetic information are important in bacterial and
archaeal evolution in today’s world, and they may have occurred even more fre-
quently and promiscuously in the early days of life on Earth. Such early hori-
zontal exchanges could explain the otherwise puzzling observation that the
eucaryotes seem more similar to archaea in their genes for the basic informa-
tion-handling processes of DNA replication, transcription, and translation, but
more similar to bacteria in their genes for metabolic processes. In any case,
whether horizontal gene transfer occurred most freely in the early days of life on
Earth, or has continued at a steady low rate throughout evolutionary history, it
has the effect of complicating the whole concept of cell ancestry, by making each
cell’s genome a composite of parts derived from separate sources.

Horizontal gene transfer among procaryotes may seem a surprising process,
but it has a parallel in a phenomenon familiar to us all: sex. In addition to the
usual vertical transfer of genetic material from parent to offspring, sexual repro-
duction causes a large-scale horizontal transfer of genetic information between
two initially separate cell lineages—those of the father and the mother. A key
feature of sex, of course, is that the genetic exchange normally occurs only
between individuals of the same species. But no matter whether they occur
within a species or between species, horizontal gene transfers leave a character-
istic imprint: they result in individuals who are related more closely to one set of
relatives with respect to some genes, and more closely to another set of relatives
with respect to others. By comparing the DNA sequences of individual human
genomes, an intelligent visitor from outer space could deduce that humans
reproduce sexually, even if it knew nothing about human behavior.

Sexual reproduction is widespread (although not universal), especially
among eucaryotes. Even bacteria indulge from time to time in controlled sex-
ual exchanges of DNA with other members of their own species. Natural selec-
tion has clearly favored organisms that can reproduce sexually, although evo-
lutionary theorists dispute precisely what the selective advantage of sex is.

The Function of a Gene Can Often Be Deduced from Its Sequence

Family relationships among genes are important not just for their historical
interest, but because they simplify the task of deciphering gene functions. Once
the sequence of a newly discovered gene has been determined, a scientist can
tap a few keys on a computer to search the entire database of known gene
sequences for genes related to it. In many cases, the function of one or more of
these homologs will have been already determined experimentally, and thus,
since gene sequence determines gene function, one can frequently make a good
guess at the function of the new gene: it is likely to be similar to that of the
already-known homologs.

In this way;, it is possible to decipher a great deal of the biology of an organ-
ism simply by analyzing the DNA sequence of its genome and using the infor-
mation we already have about the functions of genes in other organisms that
have been more intensively studied.
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Figure 1-27 The viral transfer of DNA
from one cell to another. (A) An electron
micrograph of particles of a bacterial
virus, the T4 bacteriophage. The head of
this virus contains the viral DNA; the tail
contains the apparatus for injecting the
DNA into a host bacterium. (B) A cross
section of a bacterium with a T4
bacteriophage latched onto its surface.
The large dark objects inside the
bacterium are the heads of new T4
particles in course of assembly. When
they are mature, the bacterium will burst
open to release them. (A, courtesy of
James Paulson; B, courtesy of Jonathan
K