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Preface

This is an undergraduate one-variable analysis text. For undergraduate students,
the transition from calculus to analysis is often disorienting and mysterious. What
happened to the beautiful calculus formulas? Where did €-8 and open sets come
from? Itis not until later that one integrates these seemingly diverse points of view.
When teaching “advanced calculus”, I always had a difficult time answering these
questions.

Now, every mathematician knows that analysis arose naturally in the nineteenth
century out of the calculus of the previous two centuries. Believing that it was
possible to write a book reflecting, explicitly, this organic growth, I set out to do
so.

I chose several of the jewels of classical eighteenth and nineteenth century
analysis and inserted them at the end of the book, inserted the axioms for reals at the
beginning, and filled in the middle with (and only with) the material necessary for
clarity and logical completeness. In the process, every little piece of one-variable
calculus assumed its proper place, and theory and application were interwoven
throughout.

Let me describe some of the unusual features in this text, as there are other
books that adopt the above point of view. First is the systematic avoidance of €¢-6
arguments. Continuous limits are defined in terms of limits of sequences, limits
of sequences are defined in terms of upper and lower limits, and upper and lower
limits are defined in terms of sup and inf. Everybody thinks in terms of sequences,
so why do we teach our undergraduates €’s and 8°s? (In calculus texts, especially,
doing this is unconscionable.)

The second feature is the treatment of integration. Since the integral is supposed
to be the area under the graph, why not define it that way? What goes wrong?
Why don’t we define! the area of all subsets of R?? This is the point of view
we take in our treatment of integration. As is well known, this approach remains
valid, with almost no modifications, in higher dimensions.

The third feature is the treatment of the theorems involving interchange of limits
and integrals. Ultimately, all these theorems depend on the monotone convergence
theorem which, from our point of view, follows from the Greek mathematicians’

! As in geometric measure theory.
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method of exhaustion. Moreover, these limit theorems are stated only after a clear
and nontrivial need has been elaborated. For example, differentiation under the
integral sign is used to compute the area under the graph of the bell-shaped curve.

As a consequence of our treatment of integration, uniform convergence and
uniform continuity can be dispensed with. (If the reader has any doubts about
this, a glance at the range of applications in Chapter 5 will help.) Nevertheless,
we give a careful treatment of uniform continuity, and use it, in the exercises, to
discuss an alternative eclumsy definition of the integral that was important in the
nineteenth century.

The fourth feature is our complete avoidance of complex numbers. We do this
to bring out the fundamental simplicity of the material in Chapter 5, which is
usually presented in a complex setting.

The fifth feature is our heavy emphasis on computational problems. Computa-
tion, here, is often at a deeper level than expected in calculus courses and varies
from the high school quadratic formula in §1.4 to ¢/(0) = — log(27)/2 in §5.8.

Because we take the real numbers as our starting point, basic facts about the
natural numbers, trigonometry, or integration are rederived in this context, either
in the text or as exercises. Although it is helpful for the reader to have seen calculus
prior to reading this text, the development does not presume this. We feel it is
important for undergraduates to see, at least once in their four years, a nonpedantic,
purely logical development that starts from scratch, is self-contained, and leads to
nontrivial and striking results.

We have attempted to present applications from many parts of analysis, many
of which do not usually make their way into advanced calculus books. For ex-
ample we discuss a specific transcendental number, convex conjugates, Machin’s
formula, the Cantor set, the Bailey-Borwein-Plouffe series, continued fractions,
Laplace and Fourier transforms, Bessel functions, Euler’s constant, the AGM,
the gamma and beta functions, the entropy of the binomial coefficients, infinite
products and Bernoulli numbers, theta functions, the zeta function, primes in arith-
metic progressions, the Euler—-Maclaurin formula, and the Stirling series. Again
and again, in discussing these results, we show how the “theory” is indispensable.

As anaid to self-study and assimilation, there are 347 problems with all solutions
at the back of the book. If some of the more “theoretical parts” are skipped, this
book is suitable for a one-semester course (the extent to which this is possible
depends on the students’ calculus abilities). Alternatively, covering thoroughly
the entire text fills up a year—course, as I have done at Temple teaching our advanced
calculus sequence.



Acknowledgements

While writing I benefited from? Courant [5), Lang [9], and Whittaker—Watson
[12]. Over and over, I opened Euler’s calculus book (translated into English [7])
to see how he would do something, and Birkhoff’s book [2] gave me a feeling for
the historical development. The historical remarks at the beginning of Chapter 4
are from Numbers [6]. 1 also looked at Pinsky’s PDE book [10] and the recent
advanced calculus book by Strichartz [11].

Ilearned Euler’s theorem on primes in arithmetic progressions from Knapp’s re-
cent Notices article [8], the Euler~Maclaurin formula from a lecture® of Guillemin
at the University of Pennsylvania (Spring 1995), the arithmetic—geometric mean
and theta functions from Borwein and Borwein’s book [3], and the Bailey—
Borwein—Plouffe series [4] from the worldwide web.

I spent many hours discussing this book, in particular, and calculus issues,
in general, with my colleagues. I would like especially to thank Eric Grinberg,
Seymour Haber, and Jack Schiller. I am grateful to the students, especially Natalie
Boon, in my 1995-96 advanced calculus course, who pointed out errors and made
helpful comments. I am also grateful to Temple University and the National
Science Foundation (DMS-9121317) for their support.

The text was produced with* the A\ 4S-TiEX macro, the figures were drawn with
Adobe INustrator, and the graphs were plotted with Waterloo Software’s Maple.

2References are at the end of the book.
3E. L. Grinberg graciously lent me his notes.
4Using Blue Sky Research’s Textures on an Apple Macintosh.






Contents

Preface vii
Acknowledgements ix
1 The Set of Real Numbers 1
1.1 Sets and Mappings 1
1.2 The SetR 3
1.3 The Subset N and the Principle of Induction 7
1.4 The Completeness Property 12
1.5 Sequences and Limits 16
1.6 Nonnegative Series and Decimal Expansions 25
1.7 Signed Series and Cauchy Sequences 30
2 Continuity 39
2.1 Compactness in R and R? 39
2.2 Continuous Limits 42
2.3 Continuous Functions 45
3 Differentiation 61
3.1 Derivatives 61
3.2 Mapping Properties 68
3.3 Graphing Techniques 74
3.4 Power Series 83
3.5 Trigonometry 94
3.6 Primitives 102
4 Integration 110
4.1 The Cantor Set 110
4.2 Area 114
4.3 The Integral 127
4.4 The Fundamental Theorem of Calculus 143
4.5 The Method of Exhaustion 153
5 Applications 163
5.1 Euler’s Gamma Function 163
5.2 The Number & 168

5.3 Gauss’ Arithmetic-Geometric Mean (AGM) 182



xii

Contents

5.4 The Bell-Shaped Curve

5.5 Stirling’s Approximation of n!
5.6 Infinite Products

5.7 Jacobi’s Theta Functions

5.8 Riemann’s Zeta Function

5.9 The Euler—Maclaurin Formula

Appendix Solutions
A.1 Chapter 1
A.2 Chapter 2
A.3 Chapter 3
A.4 Chapter 4
A.5 Chapter S

References
Index

188
197
203
211
217
226

234
234
248
255
269
285

307
309



1

The Set of Real Numbers

A Note to the Reader

This text consists of many assertions, some big, some small, some almost insignif-
icant. These assertions are obtained from the properties of the real numbers by
logical reasoning. Assertions that are especially important are called theorems.
An assertion’s importance is gauged by many factors, including its depth, how
many other assertions it depends on, its breadth, how many other assertions are
explained by it, and its level of symmetry. The later portions of the text depend
on every single assertion, no matter how small, made in Chapter 1.

The text is self-contained, and the exercises are arranged linearly: Every exer-
cise can be done using only previous material from this text.

Doing the exercises is essential for understanding the material in the text. Some
exercises develop additional optional material; these are indicated by a J.

Sections are numbered linearly within each chapter; for example, §4.3 means the
third section in Chapter 4. Equations are numbered linearly within each section;
equation numbers are always written within parentheses. Thus, a reference to
(3.1) in Chapter 4 is a reference to the first numbered equation in §4.3, whereas
a reference to (3.1) in Chapter 2 is a reference to the first numbered equation in
§2.3.

Throughout, we use the abbreviation ‘iff’ to mean ‘if and only if’ and O to
signal the end of a derivation.

81.1 Sets and Mappings

We assume the reader is familiar with the usual notions of sets and mappings, but
we review them to fix the notation. Strictly speaking, some of the material in this
section should logically come after we discuss natural numbers (§1.3). However
we include this material here for convenience.

A set is a collection A of objects, called elements. If x is an element of A we
write x € A. If x is not an element of A, we write x ¢ A. Let A, B be sets. If
every element of A is an element of B, we say A is a subset of B, and we write
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A C B. Equivalently, we say B is a superset of A and we write B O A. When
we write A C B or A D B, we allow for the possibility A = B, i.e., A C A and
AD A.

The union of sets A and B is the set C whose elements lie in A or lie in B; we
write C = AU B, and we say C equals A union B. The intersection of sets A and
B is the set C whose elements lie in A and lie in B; we write C = AN B and we
say C equals A inter B. Similarly, one defines the union A; U...U A, and the
intersection A; N...N A, of finitely many sets Ay, ..., A,.

More generally, given any infinite collection of sets Ay, Az, ..., their union is
the set Us?__l A, whose elements lie in at least one of the given sets. Similarly,
their intersection [ ), A, is the set whose elements lie in all the given sets.

Let A and B be sets. If they have no elements in common, we say they are
disjoint, AN B is empty, or AN B = @, where @ is the empty set, i.e., the set with
no elements. By convention, we consider { a subset of every set.

The set of all elementsin A, but notin B,isdenoted AN B ={x € A:x ¢ B}
and is called the complement of B in A. For example, when A C B, theset A\ B
is empty. Often the set A is understood from the context; in these cases, A \ B is
denoted B¢ and called the complement of B.

We will have occasion to use De Morgan’s law,

(34 -1

n=1 n=1

(Fw) - O

n=1

We leave this as an exercise. Of course these also hold for finitely many sets
Ay, ..., A,

If A, B are sets, their product is the set A x B whose elements consist of all
ordered pairs (a, b) witha € A and b € B. A relation between two sets A and B
isasubset f C A x B. A mapping is arelation f C A x B, such that, for each
a € A, there is exactly one b € B with (a, b) € f. In this case, it is customary to
writeb = f(a)and f : A - B.

If f: A — B is amapping, the set A is the domain, the set B is the codomain,
and the set f(A) = {f(a) : @ € A} C B is the range. A function is a mapping
whose codomain is the set of real numbers R, i.e., the values of f are real numbers.

A mapping f : A — B is injective if f(a) = f(b) implies a = b, whereas
f 1 A — Bissurjective if every element b of B equals f(a) for somea € A, i.e.,
if the range equals the codomain. A mapping that is both injective and surjective
is bijective.

Iff:A— Bandg: B — C are mappings, their composition is the mapping
gof:A— Cgivenby (go f)@) = g(f(a)) foralla € A. In general,
gof# fog.

If f:A— Bandg: B — A are mappings, we say they are inverses of each
otherif g(f(a)) =aforalla € A and f(g(b)) =bforallb e B. A mapping
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f 1 A = B is invertible if it has an inverse g. It is a fact that a mapping f is
invertible iff f is bijective.

Exercises 1.1

1. Give an example where fog # go f.

2. Verify De Morgan’s law.

3. Show that a mapping f : A — B is invertible iff it is bijective.

4. Let f : A — B be bijective. Show that the inverse g : B — A is unique.

§1.2 The Set R

We are ultimately concerned with one and only one set, the set R of real numbers.
The properties of R that we use are

e the arithmetic properties,
o the ordering properties, and
e the completeness property.

Throughout, we use ‘real’ to mean ‘real number’, i.e., an element of R.

The arithmetic properties start with the fact that reals a, b can be added to
produce areal a -+ b, the sum of a and b. The rules for additionarea +b =b +a
and a + (b + ¢) = (a + b) + ¢, valid for all reals a, b, and c¢. There is also a real
0, called zero, satisfying a + 0 = 0 + a = a for all reals a, and each real a has a
negative —a satisfying a + (—a) = 0. As usual, we write subtraction a + (—b)
asa — b.

Reals a, b can also be multiplied to produce areal a - b, the product of a and b,
also written ab. The rules for multiplication are ab = ba, a(bc) = (ab)c, valid
for all reals a, b, and c. There is also areal 1, called one, satisfyingal = la =a
for all reals a, and each real a # 0 has a reciprocal 1/a satisfying a(1/a) = 1.
As usual, we write division a(1/b) as a/b.

Addition and multiplication are related by the property a(b + ¢) = ab + ac
for all reals a, b, and ¢ and the assumption 0 # 1. Let us show how the above
properties imply there is a unique real number O satisfying0 +a =a+0=a
for all a. If 0’ were another real satisfying 0' +a = a + 0/ = a for all a, then,
we would have 0’ = 040" = 0’ + 0 = 0, hence, 0 = (/. Also it follows that
there is a unique real playing the role of one and Oa = O for all a. These are the
arithmetic properties of the reals.

The ordering properties start with the fact that there is subset R of R, the
set of positive numbers, that is closed under addition and multiplication, i.e., if
a,b € R, then a + b, ab € R*. If a is positive, we write a > 0 or 0 < a, and
we say a is greater than 0 or O is less than a, respectively. Let R™ denote the set
of negative numbers, i.e., R~ = —R™ is the set whose elements are the negatives
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of the elements of R*. The rules for ordering assume the sets R™, {0}, R* are
pairwise disjoint and their union is all of R. We writea > b and b < a to mean
a —b > 0. Then, 0 > a iff a is negative and a > b implies a + ¢ > b +c. These
are the ordering properties of the reals.

From the ordering properties, it follows, for example, that 0 < 1, i.e., one is
positive, a < b and ¢ > 0 imply ac < bc, 0 < a < b implies aa < bb, and
a < b,b < cimply a < c. As usual, we also write < to mean < or =, > to mean
> or =, and we say a is nonnegative or nonpositive ifa > 0O ora < 0.

If S is a set of reals, a number M is an upper bound for S if x < M for all
x € . Similarly, m is a lower bound for S if m < x for all x € S (Figure 1.1).
For example, 1 and 1 + 1 are upper bounds for thesets J = {x : 0 < x < 1}
and I = {x : 0 < x < 1} whereas 0 and —1 are lower bounds for these sets. S
is bounded above (below) if it has an upper (lower) bound. S is bounded if it is
bounded above and bounded below.

Not every set of reals has an upper or a lower bound. Indeed, it is easy to see
that R itself is neither bounded above nor bounded below. A more interesting
example is the set N of natural numbers (next section): N is not bounded above.

A A A

eSS S ——

m X M

FiGURE 1.1. Upper and lower bounds for A.

A given set S of reals may have several upper bounds. If S has an upper bound
M, such that M < b for any other upper bound b of S, then, we say M is a least
upper bound or M is a supremum or sup for S, and we write M = sup S. Since
there cannot be more than one least® upper bound, the sup, whenever it exists, is
uniquely determined. For example, in the next section, we see that sup I = 1 and
supJ = 1. Similarly, a real m that is a lower bound for S and satisfies m > b
for all other lower bounds b is called a greatest lower bound or an infimum or
inf for S, and we write m = inf S. Again the inf, whenever it exists, is uniquely
determined.

The completeness property of R asserts that every nonempty set S C R that is
bounded above has a sup, and every nonempty set S C R that is bounded below
has an inf.

We introduce a convenient abbreviation, two symbols 0o, —o0, called infinity
and minus infinity, subject to the ordering rule —oo < x < oo for all reals x. If
a set S is not bounded above, we write sup S = oo. If S is not bounded below,

we write inf S = —o00. For example, supR = 00, inf R = —00; in §1.4 we show
that sup N = o0o. Recall that the empty set @ is a subset of R. Another convenient
abbreviation is to write sup@ = —oo, inf @ = oo. Clearly, when S is nonempty,
inf S < sup S.

’If @ and b are least upper bounds, then,a < band a > b.



§1.2 The SetR S

With this terminology, the completeness property asserts that every subset of R,
bounded or unbounded, empty or nonempty, has a sup and has an inf- these may
be reals or to0.

We emphasize that oo and —oo are not reals but just convenient abbreviations.
As mentioned above, the ordering properties of 400 are —o0 < x < oo for all
real x; it is convenient to define the following arithmetic properties of =-00:

o0 4+ 00 = 00,
—00 — 00 = —00,
00 — (—00) = 090,

o0 %+ ¢ = 00, ceR,
—00 + ¢ = —00, c€R,
(+00) - ¢ = +o00, c>0,

00 - 00 = 09,

00 - (—o0) = —o00.

Note that we have not defined co — 00, 0 - 00, co/00, or ¢/0.

Let a be an upper bound for aset S. If a € S, we say a is a maximum of S, and
we write 2 = max S. For example, with I as above, max I = 1. The max of a set
S need not exist; for example, in §1.4, we will see that max J does not.

Similarly, let a be a lower bound for a set S. If a € S, we say a is a minimum
of S, and we write a = min S. For example, min I = 0 but (§1.4) min J does not
exist.

Theorem. Let S C R be a set. The max of S and the min of S are uniquely
determined whenever they exist. The max of S exists iff the sup of S lies in S, in
which case the max equals the sup. The min of S exists iff the inf of S lies in S, in
which case the min equals the inf.

To see this, note that the first statement follows from the second since we already
know that the sup and the inf are uniquely determined. To establish the second
statement, suppose that sup S € S. Then, since sup S is an upper bound for S,
max S = supS. Conversely, suppose that max S exists. Then, supS < max$§
since max S is an upper bound and sup S is the least such. On the other hand,
sup S is an upper bound for S and max § € §. Thus, max S < sup S. Combining
supS < max S and supS > max S, we obtain max § = sup S. For the inf, the
derivation is completely analogous. [J

Because of this, when max S exists we say the sup is attained. Thus, the sup
for I is attained whereas the sup for J is not. Similarly, when min S exists, we
say the infis attained. Thus, the inf for 7 is attained whereas the inf for J is not.

Let A, B be subsets of R, leta be real, and let ¢ > 0; let —A = {—x : x € A},
A+a={x+a:xe€ Al,cA={cx:x € A},andA+B ={x+y:x € A,y € B}.
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Here are some simple consequences of the definitions that must be checked at this
stage:

e A C Bimpliessup A < sup Bandinf A > inf B (monotonicity property).

e sup(—A) = —inf A, inf(—A) = — sup A (reflection property).

e sup(A +a) =supA +a, inf(A + a) = inf A + a for a € R (translation
property).

e sup(cA) = csup A, inf(cA) = cinf A for ¢ > ( (dilation property).

e sup(A + B) = sup A + sup B, inf(A + B) = inf A + inf B (addition
property), whenever the sum of the sups and the sum of the infs are defined.

These properties hold whether A and B are bounded or unbounded, empty or
nonempty.

We verify the first and the last properties, leaving the others as Exercise 7.
For the monotonicity property, if A is empty, the property is immediate since
supA = —oo and inf A = oco. If A is nonempty and a € A, then a € B, hence,
inf B < a < sup B. Thus, sup B and inf B are upper and lower bounds for A,
respectively. Since sup A and inf A are the least and greatest such, we obtain
inf B <inf A <supA <supB.

Now, we verify sup(A + B) = sup A +sup B. If A is empty, then, so, is A + B;
in this case, the assertion to be proved reduces to —oo + sup B = —oo which is
true (remember we are excluding the case co — 00). Similarly, if B is empty.

If A and B are both nonempty, then, supA > x forall x € A, and supB > y
forally € B, so,supA+supB > x+ yforallx € A and y € B. Hence,
sup A+sup B > zforallz € A+ B, or sup A+ sup B is an upper bound for A} B.
Since sup(A + B) is the least such, we conclude that sup A +sup B > sup(A + B).
If sup(A + B) = 00, then, the reverse inequality sup A + sup B < sup(A + B) is
immediate, yielding the result.

If, however, sup(A + B) < coand x € A, y € B, then, x + y € A+ B,
hence, x + y < sup(A + B) or, what is the same, x < sup(A + B) — y. Thus,
sup(A + B) — y is an upper bound for A; since sup A is the least such, we get
sup A < sup(A + B) —y. Now, this last inequality implies, first, sup A < oo and,
second, y < sup(A + B) —sup A forall y € B. Thus, sup(A + B) —sup A is an
upper bound for B; since sup B is the least such, we conclude thatsup B < sup(A+
B) — sup A or, what is the same, sup(A + B) > sup A + sup B. Since we already
know that sup(A + B) < sup A +sup B, we obtain sup(A + B) = sup A +sup B.

To verify inf(A + B) = inf A + inf B, use reflection and what we just finished
to write

inf(A + B) = —sup[—(A + B)] = —sup[(—A) + (—B)]
= —sup(—A) — sup(—B) = inf A + inf B.
This completes the derivation of the addition property.

Every assertion that follows in this book depends only on the arithmetic, order-
ing, and completeness properties of R, just described.
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Exercises 1.2
1. Show that a0 = O for all real a.

2. Show that there is a unique real playing the role of 1. Also show that each real
a has a unique negative —a and each nonzero real @ has a unique reciprocal.

3. Show that —(—a) = a and —a = (—1)a.

4. Show that negative times positive is negative, negative times negative is posi-
tive, and 1 is positive.

5. Showthata < bandc € Rimplya+c < b+c,a < b and ¢ > 0 imply
ac < bc,a <band b < cimply a < ¢,and 0 < a < b implies aa < bb.

6. Leta, b > 0. Show thata < b iff aa < bb.

7. Verify the properties of sup and inf listed above.

§1.3 The Subset N and the Principle of Induction

A subset S C R is inductive if

(1) 1e Sand
(2) S is closed under addition by 1: x € S impliesx + 1 € S.

For example, R* is inductive. The subset N C R of natural numbers ox naturals
is the intersection of all inductive subsets of R,

N = ﬂ{s - § C R inductive}.

Then, N itself is inductive. Indeed, since 1 € S for every inductive set S, we
conclude that 1 € [}{S : S C R inductive} = N. Similarly, n € N impliesn € S
for every inductive set S. Hence, n + 1 € § for every inductive set S. Hence,
n+1 e N{S: S C Rinductive} = N. This shows that N is inductive.

From the definition, we conclude that N C § for any inductive S C R. For
example, since R* is inductive, we conclude that N C R, i.e., every natural is
positive.

From the definition, we also conclude that N is the only inductive subset of N.
For example, S = {1} U (N + 1) is a subset of N, since N is inductive. Clearly,
1 € S. Moreover, x € S impliesx € Nimpliesx+1 € N+ 1impliesx +1 € S,
so, S is inductive. Hence, S = Nor {1}U (N +1) = N, i.e., n — 1 is a natural for
every natural n other than 1.

The conclusions above are often paraphrased by saying N is the smallest induc-
tive subset of R, and they are so important they deserve a name.

Principle of Induction. IfS C Risinductive, then, S DO N. IfS C Nisinductive,
then, S =N. 0O
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Let2 = 1+ 1 > 1; we show that there are no naturals between 1 and 2. For
this,let S = {I}U{n e N: n > 2}. Then,1 € S. If n € S, there are two
possibilities. Eithern = lorn# 1. fn =1, then,n+1=2¢€ S. Ifn # 1,
then,n > 2,so,n+1>n>2andrn+1€N,so,n+1 e S. Hence, S is
inductive. Since S C N, we conclude that S = N. Thus,n > 1foralln € N,
and there are no naturals between 1 and 2. Similarly (Exercise 1), for any n € N,
there are no naturals between n and n 4 1.

In fact, N is closed under addition and multiplication by any natural. To sce
this, fix anatural n, andlet S = {x : x+n € N}, so, S is the set of all reals x whose
sum with n is natural. Then, 1 € Ssincen+1 € N,andx € S impliesx+n € N
implies (x +n)+ 1= (x+ 1)+ n € Nimplies x + 1 € S. Thus, § is inductive.
Since N is the smallest such set, we conclude that N C S orm +n € N for all
m € N. Thus, N is closed under addition. This we write simply as N+ N C N.
Closure under multiplication N - N C N is similar and left as an exercise.

In the sequel, when we apply the principle of induction, we simply say ‘by
induction’.

To show that a given set S is inductive, one needs to verify (1) and (2). Step (2)
is often referred to as the inductive step, even though, strictly speaking, induction
is both (1) and (2), because, usually, most of the work is in establishing (2). Also,
the hypothesis in (2), x € S, is often referred to as the inductive hypothesis.

Let us give another example of the use of induction. A natural is even if it is in
2N = {2n : n € N}. Anaturalnisoddif n+1 is even. We claim that every natural
is either even or odd. To see this, let S be the union of the set of even naturals and
the set of odd naturals. Then, 2 = 2-1iseven, so, 1isodd. Hence,1 € S. Ifn € S
andn = 2kiseven, then,n+1isoddsince (n+1)+1 = n4+2 = 2k+2 = 2(k+1).
Hence,n+1€ S. If n € S and n is odd, then,n 4+ 1 iseven,so,n +1 € S.
Hence, in either case,n € S impliesn + 1 € §, i.e., S is closed under addition by
1. Thus, S is inductive. Hence, we conclude that S = N. Thus, every natural is
even or odd. Also the usual parity rules hold: even plus even is even, etc.

Let A be anonempty set. We say A has n elements if there is a bijection between
A and the set {k € N : 1 < k < n}. We often denote this last set by {1, 2, ..., n}.
If A = 0, we say that the number of elements of A is zero. A set A is finite if it
has n elements for some n. Otherwise, A is infinite. Here are some consequences
of the definition that are worked out in the exercises. If A and B are disjoint and
have n and m elements, respectively, then, A U B has n + m elements. If A is a
finite subset of R, then, max A and min A exist. In particular, we let max(a, b),
min(a, b) denote the larger and the smaller of a and b. However, max A and min A
may exist for an infinite subset of R.

Theorem. If S C N is nonempty, then, min S exists.

To see this, note that ¢ = inf § is finite since § is bounded below. Since ¢ + 1
is not a lower bound, thereisann € Swithc <n <c+ 1. Ifc = n, then,c € §.
Hence, ¢ = min § and we are done. If ¢ # n,then,n — 1 < ¢ < n,andn isnot a
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lower bound for S. Hence, n > 1, and there is anm € S lying between n — 1 and
n. But there are no naturals betweenn — 1andn. O

The two other subsets, mentioned frequently, are the integers Z = N U {0} U
(—N) = {0, £1, £2, ...}, and the rationals Q = {m/n : m,n € Z,n # 0}.
Then, Z is closed under subtraction (Exercise 3), and Q is closed under all four
arithmetic operations, except under division by zero. As for naturals, we say that
the integers in 2Z = {2n : n € Z} are even, and we say that an integer n is odd if
n + 1is even.

Fix a real a. By (an extension of) induction, one can show (Exercise 9) that
there is a function f : N — R satisfying f(1) =a and f(n + 1) = af(n) for all
n. Asusual, we write f(n) = a". Hence, by constructiona! = a and a"*+! = a"a
for all n. Since the set {n € N : (ab)" = a"b"} 1s inductive, it follows also that
(ab)" = a"b" forn € N.

Now, (—1)" is 1 or —1 according to whether n € N is even or odd, a > 0
implies a” > O forn € N, and a > 1 implies a” > 1 for n € N. These are easily
checked by induction.

If a # 0, we extend the definition of a” to n € Z by setting a° = 1 and
a~" = 1/a" for n € N. Then (Exercise 10), a"*™ = a"a™ and (a")" = a"™ for
all integers n, m.

Leta > 1. Then,a" = a™ withn, m € Zonlywhenn = m. Indeed,n—m € Z,
anda"™ =a"a™™ =a"/a™ = 1. Buta* > 1 fork e N,anda* = 1/a* < 1
for k € —N. Hence, n — m = 0 or n = m. This shows that powers are unique.

As another application of induction, we establish, simultaneously, the validity of
the inequalities 1 < 2" and n < 2" for all naturals n. This time, we do this without
mentioning the set S explicitly, as follows. The inequalities in question are true for
n = 1since 1 < 2! = 2. Moreover, if the inequalities 1 < 2" andn < 2" are true
for a particular » (the inductive hypothesis), then, 1 < 2" < 2"+2" = 272 = 2"+1,
so, the first inequality is true for » + 1. Adding the inequalities valid for n yields
n+1 <2t 42" =2"2 = 2"+ 50, the second inequality is true for n + 1. This
establishes the inductive step. Hence, by induction, the two inequalities are true
foralln € N. Here, theset SisS={neN:1<2",n <2}

Using these inequalities, we show that every nonzero n € Z is of the form 2% p
for a uniquely determined & € N U {0} and an odd p € Z. We call k the number
of factors of 2 in n.

If2¢p = 2/g with k > j and odd integers p, g, then,g = 2~/ p = 2.2¢-i"1p
is even, a contradiction. On the other hand, if j > k, then, p is even. Hence, we
must have k = j. This establishes the uniqueness of k.

To show the existence of k, by multiplying by a minus, if necessary, we may
assume n € N. If n is odd, we may take k = 0 and p = n. If n is even, then,
ny = n/2is a natural < 2"~!, If n, is odd, we take k = 1 and p = ny. If ny is
even, then, np = n; /2 is anatural < 272, If n, is odd, we take k = 2and p = n,.
If n, is even, we continue this procedure by dividing n2 by 2. Continuing in this
manner, we obtain ny, n, ... naturals with n; < 2"~/. Since this procedure ends
in less than n steps, there is some k natural or O for which p = n /2 is odd.
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The final issue we take up here concerns square roots. Given a real a, a square
root of a, denoted ./a, is any real x whose square is a, x? = a. For example 1 has
the square roots %1, 0 has the square root 0. On the other hand, not every real has
a square root. For example, +/—1 does not exist within R, i.e., there is no real x
satisfying x2 = —1, since x2 + 1 > 0. In fact, this argument shows that negative
numbers never have square roots.

At this point, we do not know whether v/2 exists within R. Now, we show that
~/2 does not exist within Q.

Theorem. There is no rational a satisfying a*> = 2.

We argue by contradiction. Suppose that a = m/n is a rational whose square
is 2. Then, (m/n)? = 2 or m? = 2n?, i.e., there is a natural N, such that N = m?,
N = 2n?%. Then, m = 2¥p with odd p and k € NU {0}, so, N = m? = 2%p2,
Since p? is odd, we conclude that 2k is the number of factors of 2 in N. Similarly
n =2/qg withodd g and j € NU {0}, so, N = 2n? = 22% g% = 2%/+142, Since
g% is odd, we conclude that 2j + 1 is the number of factors of 2 in N. Since
2k # 2j + 1, we arrive at a contradiction. [J

Note that Q satisfies the arithmetic and ordering properties. The completeness
property is all that distinguishes Q and R.

As usual, in the following, a digit means either0,1,20r3=2+1,4=3+1,
5=44+1,6=5+1,7=6+1,8=7+1,0r9 =8+ 1. Also, the letters n,
m, i, j will usually denote integers, so, n = 1 will be used interchangeably with
n € N, with similar remarks for m, i, j.

We say that a nonzero n € Z divides m € Z if m/n € Z. Alternatively, we say
that m is divisible by n, and we write n | m. A natural n is composite if n = jk
for some j, k € N with j > 1 and k > 1. A natural is prime if it is not composite
and is not 1. Thus, a natural is prime if it is not divisible by any smaller natural
other than 1.

Fora > 1, let [a] = max{rn € N : n < a} denote the greatest integer < a
(Exercises 7 and 8). Then, [a] < a < [a] + 1, and the fractional part of a is
(@) = a — [a]. Note that the fractional part is a real in [0, 1). More generally,
[a]l € Zand 0 < (a) < 1 are defined® for alla € R.

Exercises 1.3
1. Let n be a natural. Show that there are no naturals between n and n + 1.
2. Show that the product of naturals is natural, N-N C N.

3. If m > n are naturals, then, m — n € N. Conclude that Z is closed under
subtraction.

4. Show that no integer is both even and odd. Also, show that even times even is
even, even times odd is even, and odd times odd is odd.

tneZ:n <a}is nonempty since inf Z = —oo (§1.4).
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5. I« n, m are naturals and there is a bijection between {1,2,...,n} and
{1,2,...,m]}, then, n = m (use induction on n). Conclude that the number
of elements #A of a nonempty set A is well defined. Also, show that #4 = n,
#B=m,and ANB =0 imply # (AU B) =n+m.

6. If A C R is finite and nonempty, then, show that max A and min A exist (use
induction).

7. If S C Z is nonempty and bounded above, then, show that S has a max.

8. If x > y > O are reals, then, show that x = yq + r withg € N,r € R* U {0},
andr < y. (Look at the sup of {g € N: yq < x}.)

9. % Fixareala. Aset f C R x Risinductiveif (1,a) € f and (x,y) € f
implies (x + 1,ay) € f. For example, N x R is inductive. Now, let f be the
smallestinductive setin R x Randlet A = {x € R: (x, y) € f for some y € R}.

(1) Show that A = N.
(2) Show that f is a mapping with domain N and codomain R.
(3) Show that f(1) =a and f(n + 1) =af (n) foralln > 1.

This establishes the existence of a function f : N — R satisfying f(1) = a and
f(n+ 1) =af(n) for all n > 1. This function is usually denoted f(n) = a”".

10. Let a be a nonzero real. By induction show that a"a™ = a"*™ and (a")" =
a™™ for all integers n, m.

11. Let p > 1 be a natural. Show that for each nonzero n € Z there is a unique
k € N U {0} and an integer m not divisible by p (i.e., m/p is not in Z), such that
n=p*m.

12. Let S C R satisfy

(1) 1e Sand
(2) n € S whenever k € S for all naturals k < n.

Show that S O N. This is an alternate, and sometimes useful, form of induction.

13. % Fixa > Oreal, andlet S, = {n € N : na € N). If S, is nonempty,
m € S,, and p = min S,, show that p divides m (Exercise 8).

14. % Let n, m be naturals and suppose that a prime p divides the product nm.
Show that p divides n or m. (Consider a = n/p, and show that min S, = 1 or
min S, = p.)

15. % (Fundamental Theorem of Arithmetic) By induction, show that every
natural » either is 1 or is a product of primes, n = p; ... p,, with the p;’s unique

except, possibly, for the ordering. (Given n, either n is prime orn = pm for some
natural 1 < m < n; use induction as in Exercise 12.)

16. % Given 0 < x < 1, let ro = x. Define naturals g, and remainders r,, by
setting .

1
— =gup1+ 1, n=0.
n
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Thus, gn1 = [1/r,} and ry4q = (1/1,), and

1
qn +ry

is a continued fraction. This algorithm stops the first time r, = 0. Then, the
continued fraction is finite. If this never happens, this algorithm does not end, and
the continued fraction is infinite. Show that the algorithm ends iff x € Q.

gn-1+

§1.4 The Completeness Property

We begin by showing N has no upper bound. Indeed, if N has an upper bound,
then, N has a (finite) sup, call it ¢. Then, ¢ is an upper bound for N whereas ¢ — 1
is not an upper bound for N, since c is the least such. Thus, thereisann > 1,
satisfyingn > ¢ — 1, which givesn + 1 > c and n 4 1 € N. But this contradicts
the fact that c is an upper bound. Hence, N is not bounded above. In the notation
of §1.2, supN = o0.

Let S = {1/n : n € N} be the reciprocals of all naturals. Then, § is bounded
below by 0, hence, S has an inf. We show that inf § = 0. First, since 0 is a lower
bound, by definition of inf, inf S > 0. Second, letc > 0. Since sup N = o0, there
is some natural, call it k, satisfying k > 1/c. Multiplying this inequality by the
positive ¢/k, we obtain ¢ > 1/k. Since 1/k is an element of S, this shows that ¢
is not a lower bound for S. Thus, any lower bound for S must be less or equal to
0. Hence, inf S = 0.

The two results just derived are so important we state them again.

Theorem. supN = o0, andinf{l/n:n eN}=0. O

As a consequence, since Z D N, it follows that supZ = 0. Since Z D (—N)
and inf(A) = —sup(—A), it follows that inf Z < inf(—N) = —supN = —oo,
hence, inf Z. = —o0.

An interval is a subset of R of the following form:

(a,b)={x:a<x <b},
[a,b]={x:a <x <b},
[a,b)={x:a <x < b},

(a,bl={x:a <x <b).
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Intervals of the form (a, b) are open, whereas those of the form [a, b] are compact.
When we use this notation, we are allowing b in (a, b) or [a, b) to equal co and
a in (a, b) or (a, b] to equal —oo. Thus, (a, 00) = {x : x > a}, (—oo0, b] = {x :
x < b}, and (—o0, 00) = R.

Let us go back to the open interval J = (0, 1). We already know that 1 is an
upper bound for J. If 0 < ¢ < 1,then, 1 — ¢ > 0. Since inf{l/n :n € N} =0,
there is a natural n satisfying 0 < 1/n < 1 — ¢ whichimpliesc < c+1/n < 1.
Hence, ¢+ 1/n isin J and is greater than c, so, ¢ is not an upper bound for J. We
conclude that sup J = 1 and max J does not exist (since, by definition, the max
must lie in the set). Similarly, inf J = 0, and min J does not exist.

For x € R, we define |x|, the absolute value of x, by

x| = max(x, —x).

Then, x < |x|forall x,and, fora > 0,{x: —a<x <a}l={x:|x| <a}={x:
x<alN{x:x>—-a},{x:x<—alU{x:x>a}={x:|x| > a)
The absolute value satisfies the following properties:

(1) |x] > 0 for all nonzero x, and |0] = 0,
(@ Ix||yl = |xy| forall x, y,
3) Ix+yl < Ix]+ |yl forallx, y.

We leave the first two as exercises. The third, the triangle inequality, is derived

using |x|?> = x? as follows:
Ix +y1* = (x + y)? = x% +2xy + y*
< Ix12 + 2lxyl + P = I + 2] Iyl + |y = (x] + 1yD*.

Since a < b iff a*> < b? for a, b nonnegative (Exercise 6 of §1.2), the triangle
inequality is established.

Frequently, the triangle inequality is used in alternate forms, one of which is

Ix — y| = |x| — Iyl
This follows by writing |x| = |(x — y) + y| < Ix — y| + |y| and transposing |y|
to the other side. Another form is
lay +az+---t+anl < lail +la2l +---+la.l, n>=1.

We show how the completeness property can be used to derive the existence of
/2 within R.

Theorem. There is a real a satisfying a* = 2.

To see this, let S = {x : x > 1 and x? < 2}. Since 1 € S, S is nonempty. Also,
x € S implies x = x1 < xx = x? < 2, hence, S is bounded above by 2, hence, S
has a sup, call it a. We claim that a* = 2. We establish this claim by ruling out
the cases a2 < 2 and a2 > 2, leaving us with the desired conclusion (remember
every real is positive or negative or zero).



14 1. The Set of Real Numbers

So, suppose that a% < 2. If we find a natural n with

1\2
(a+—) <2,
n

then, a + 1/n € S, hence, the real a could not have been an upper bound for S,
much less the least such. To see how to find such an n, note that

1\2 , 2a 1
at+-) =a"+—+—
n n n

1, 2a+1

_<_a2+z‘i+—-=a+ <2
n n

n

if 2a+1)/n < 2—a?ie., ifn > 2a+1)/(2 —a?). Sincea? < 2,b =
(2a + 1)/(2 — a?) is a perfectly well defined positive real. Since supN = oo,
such a natural n > b can always be found. This rules out a? < 2.

Before we rule out a2 > 2, we note that S is bounded above by any positive b
satisfying b2 > 2 since, for b and x positive, b?> > x2 iff b > x.

Now suppose that a2 > 2. Then, b = (a? — 2)/2a is positive, hence, there is a
natural » satisfying 1/n < b which implies a?> — 2a/n > 2. Hence,

2
( —l) =az—-2—a-+—l§>2,
n n n

so, a — 1/n is an upper bound for S. This shows that a is not the least upper
bound, contradicting the definition of a. Thus, we are forced to conclude that
a2=2. 0O

A real a satisfying a®2 = 2 is called a square root of 2. Since (—x)? = x2,
there are two square roots of 2, one positive and one negative. From now on,
the positive square root is denoted +/2. Similarly, every positive a has a positive
square root, which we denote ./a.

More generally, for every b > 0 and n > 1, there is a unique a > O satisfying
a" = b, the nth root a = b'/" of b. Now, forn > 1,k > 1,and m € Z,

n n k 3
[(bM)]/n] k — {[(bm)l/n] } - (bnl)l\ e b'"k,

hence, by uniqueness of roots, (b™)!/" = (b"™*)!/"*_ Thus, for r = m/n rational,
we may set b = (b™)!/", defining rational powers of positive reals.

Since +/2 ¢ Q, R \ Q is not empty. The reals in R ~. Q are the irrationals. In
fact, both the rationals and the irrationals have an interlacing or density property.

Theorem. If a < b are any two reals, there is a rational s between them, a <
s < b, and there is an irrational t between them,a <t < b.

To see this, first, choose a natural n satisfying 1/n < b — a. Second, let
S={meN:na<m),andletk = inf S = min §. Since k € S, na < k. Since
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k—1¢S,k—1 < na. Hence, s = k/n satisfies

1
a<ssa+;<b.

For the second assertion, choose a natural n satisfying 1/n+/2 < b — a, let
T={meN: 2na < m}, andletk = min7T. Since k € T, k > /2na. Since
k—1¢T,k—1 < +/2na. Hence, t = k/(n~/2) satisfies

1
a<t<a+-—=<b.
n/2

Moreover, t is necessarily irrational. [
Approximation of reals by rationals is discussed further in the exercises.

Exercises 1.4

1. Show thatx < |x| forall x and, fora > 0,{x : —a <x <a}={x: |x] <
al={x:x<a}N{x:x>—-a)l,{x:x <—-a}U{x:x >a}={x:|x| >a).
2. Forallx eR, |x| =0, |x] > 0if x # 0, and |x| |[y| = |xy| forall x,y € R.
3. By induction, show that |a; + a2 + --- + a,| < |ai]l + laz2] + - - - + |a,| for
n>1.

4. Show that every a > 0 has a unique positive square root.

5. Show thatax?+bx+c = 0,a s 0, has two, one, or no solutions in R according
to whether b? — 4ac is positive, zero, or negative. When there are solutions, they
are given by x = (—b % V/b? — 4ac)/2a.

6. By induction, show that (1 +@a)" <14+ (2" —1)aforn>1and0 <a < 1.
Alsoshowthat (1 +a)">1+naforn>1anda > —1.

7. Fora,b > 0, show that a” > b" iff a > b. Also show thatevery b > O has a
unique positive nth root for all n > 1 (use Exercise 6 and modify the derivation

for v/2).
8. Show that the real ¢ constructed in the derivation of the last theorem is irrational.
9. % Let a be any real. Show that, for each € > 0, no matter how small, there
are integers n # 0, m satisfying
m €
Ia - —I < —.
n n

(Let (x) denote the fractional part of x, consider the sequence (a), (2a), 3a), ...,
and divide [0, 1] into finitely many subintervals of length less than €. Since there
are infinitely many terms in the sequence, at least 2 of them must lie in the same

subinterval.)

10. % Show that a = /2 satisfies
-1z 5

nl™ @v2Z+1)n?’
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(Consider the two cases |a — m/n| = 1 and |a — m/n| < 1, separately, and look
at the minimum of n?| f (m/n)| with f(x) = x* —2.)

11. % Leta = V1 ++/2. Then, a is irrational, and there is a positive real ¢
satisfying

(Factor f(a) = a* — 2a%? — 1 = 0, and proceed as in the previous exercise.)

12. % Forn € Z~ {0}, define |n|, = 1/2* where k is the number of factors of 2
in n. Also define |0]; = 0. For n/m € Q define |n/m|; = |n|2/|m|2. Show that
|- |2 : Q = R is well defined and satisfies the absolute value properties (1), (2),
and (3).

§1.5 Sequences and Limits

A sequence’ of real numbers is a function f : N — R. Usually, we write a
sequence as (a,) where @, = f(n) is the nth term. For example, the formulas
a, = n,b, = 2n,c, = 2",andd, = 27" +5n yield sequences (a,), (b), (c,), and
(d,). Later, we will consider sequences of sets (Q,) and sequences of functions
(f»), but now we discuss only sequences of reals.

It is important to distinguish between the sequence (a, ) (the function f) and the
set{a,} (therange f(N) of f). Infact, asequenceis an ordered set (a,, as, as, .. .)
and not just a set {a), az, a3, ...}. Sometimes it is more convenient to start se-
quences from the index n = 0, i.e., to consider a sequence as a function on NU{0}.
For example, the sequence (1,2, 4,8, ...) can be written g, = 2",n > 0. Spe-
cific examples of sequences are usually constructed by induction as in Exercise 9
of §1.3. However, we will not repeat the construction carried out there for each
sequence we encounter.

In this section, we are interested in the behavior of sequences as the index »
increases without bound. Often this is referred to as the “limiting behavior” of
sequences. For example, consider the sequences

(@) = (1/2, 2/3 3/4 4/5
(bn) =(1,—

(cn) = 2J”\/_\/— )

(dn) = (2,3/2,17/12,577/408, ...),

"This notion makes sense for finite sets also: A finite sequence (ay, ..., a,) of reals is a
function f: {1,...,n} = R.
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where, in the last® sequence, d) = 2, dy = (d) + 2/d1)/2, d3 = (d2 + 2/d2)/2,
ds = (d3+2/d3) /2, and so on. What are the limiting behaviors of these sequences?

As n increases, the terms in (a,) are arranged in increasing order, and a, < 1
for all n > 1. However, if we increase n sufficiently, the terms a, = (n — 1)/n =
1—1/n become arbitrarily closeto 1, since sup{l—1/n : n > 1} = 1(§1.4). Thus,
it seems reasonable to say that (a,) approaches one or the limit of the sequence
(a») equals one.

On the other hand, the sequence (b,) does not seem to approach any single real,
as it flips back and forth between 1 and —1. Indeed, one is tempted to say that
(bn) has two limits, 1 and —1.

The third sequence is more subtle. Since we have ./x < x for x > 1, the terms
are arranged in decreasing order. Because of this it seems reasonable that (c,)
approaches its “bottom”, i.e., (c,) approaches L = inf{c, : n > 1}. Although, in
fact, this turns out to be so, it is not immediately clear just what L equals.

The limiting behavior of the fourth sequence is not at all clear. If one computes
the first nine terms, it is clear that this sequence approaches something quickly.
However, since such a computation is approximate, at the outset, we cannot be
sure there is a single real number that qualifies as “the limit” of (d,,). The sequence
(dn) is discussed in Exercise 12 of this section and in Exercise 5 of §1.6.

It is important to realize that

e What does “limit” mean?
e Does the limit exist?
e How do we compute the limit?

are very different questions. When the situation is sufficiently simple, say, as in
(a,) or (b,) above, we may feel that the notion of “limit” is self-evident and needs
no elaboration. Then, we may choose to deal with more complicated situations on
a case-by-case basis and not worry about a “general” definition of limit. Histori-
cally, however, mathematicians have run into trouble using this ad hoc approach.
Because of this, a more systematic approach was adopted in which a single defi-
nition of “limit” is applied. This approach was so successful that it is universally
followed today.

Below, we define the concept of limit in two stages, first, for monotone se-
quences and, then, for general sequences. To deal with situations where sequences
have more than one limit, the auxiliary concept of a “limit point” is introduced in
Exercise 9. Now, we turn to the formal development.

Let (a,) be any sequence. We say (ay) is decreasing if a, > an4. for all natural
n. If L = inf{a, : n > 1}, in this case, we say (a,) approaches L asn /' 00, and
we write a, N\, L asn /' 0o. Usually, we drop the phrase ‘asn /' oo’ and simply
write a, \y L. We say a sequence (a,) is increasing if a, < a,4 foralln > 1. If
L = sup{a, : n > 1}, in this case, we say (a,) approaches L asn /' oo, and we
write a, /' L asn /' 0o. Usually, we drop the phrase ‘as n /' 0o’ and simply
write a, /' L. Alternatively, in either case, we say the limit of (ap) is L, and we

8Decimal notation, e.g., 17 = 7 + (9 + 1), is reviewed in the next section.
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write
lima,=0L.
n/'0o

Note that since sups and infs are uniquely determined, we say ‘the limit’ instead

of ‘a limit’. Thus,
lim (1 — -1—) =1
n/'oo n

sincesup{l —1/n:n>1}=1,
1

lim -=0
njloon
since inf{1/n:n > 1} =0, and
lim n? = o0
n/'oo

since sup{n?: n > 1} = oo.

We say a sequence is monotone if the sequence is either increasing or decreasing.
Thus the concept of limit is now defined for every monotone sequence.

If (a,) is a monotone sequence approaching a nonzero limit a, then, there is
a natural N beyond which a, # 0 for n > N. To see this, suppose that (a,) is
increasing and a > 0. Then, by definition a = sup{a, : n > 1}, hence, a/2 is
not an upper bound for (a,). Thus, there is a natural N with ay > a/2 > 0.
Since the sequence is increasing, we conclude thata, > ay > Oforn > N. If
(ay) is increasing and a < O, then, a, < a < O for all n > 1. If the sequence is
decreasing, the reasoning is similar.

Before we define limits for arbitrary sequences, we show that every sequence
(an) lies between a decreasing sequence (a;) and an increasing sequence (a,,) in
a simple and systematic fashion.

Let (a,) be any sequence. Let ay = supf{ax : k > 1}, a3 = sup{a; : k = 2},
and, for each natural n, let a; = sup{ax : k > n}. Thus, a] is the sup of all the
terms starting from the nth term. Since {a; : k > n + 1} C {a : k¥ > n} and the
sup is monotone (§1.2), a;,, < a;. Thus, (a}) is decreasing and a, < a since
a, € {a; : k = n}. Similarly, we set a,, = inf{a; : k > n) for eachn > 1.
Then, (ay.) is increasing and a, > an.. (a,) is the upper sequence, and (a,,) is
the lower sequence of the sequence (a,) (Figure 1.2).

X1e X24 = X3 = X4y = XSs X5 x3 x}=2x3=x3

X1 X5 X2 X6 Xa X3

FIGURE 1.2. Upper and lower sequences with x,, = xg, n > 6.

If the sequence (a,) is any sequence, then, the sequences (a}), (an) are mono-
tone, hence, they have limits,

a: N\ a*, Cns /" Qx.
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In fact, a, < a*. To see this, fix a natural N > 1. Then,
aN*San*SanSa;Sa;‘v, n=>N.
But since (a,,) is increasing, ay,, a2., . - . , Ay, are all < ap,, hence,

Gns < ay, n>1.

Hence, a}, is an upper bound for the set {a,., : n > 1}. Since a, is the sup of this
set, we must have a, < aj,. But this is true for every natural N. Since a* is the

inf of the set {a}, : N > 1}, we conclude thata, < a*.

Theorem. Let (a,) be a sequence, and let
a; = sup{ay : k > n}, ane = inf{ay : k > n}, n>1.

Then, (a}) and (an.) are decreasing and increasing, respectively. Moreover, if a*
and a, are their limits, then,

® Gu<a, <a,foralln=>1,
® a) \,a*

® ap. / Q., and

e —00<a, <a* <oo.

A sequence (a,) is bounded if {a; : k > 1} is abounded subset of R. Otherwise,
(an) is unbounded. We caution the reader that some of the terms a;;, a,, as well as
the limits a*, a,, may equal 00, when (a,) isunbounded. Keeping this possibility
in mind, the theorem is correct as it stands. [

If the sequence (a,) happens to be increasing, then, a; = a* and a,, = a, for
all n > 1. If (a,) happens to be decreasing, then, a; = a, and a,. = a, for all
n=>1.

If N is a fixed natural and (a,) is a sequence, let (ay+n) be the sequence
(@n+1,aN42,.--). Then, a, 7 a, iff ayyn /' au, and ap, \y a* iff ayy, \( a*.
Also, by the sup reflection property (§1.2), b, = —a, for all n > 1 implies
b = —ans, bnx = —a, for all n > 1. Hence, b* = —a,, b, = —a*.

Now we define the limit of an arbitrary sequence. Let (a,) be any sequence,
and let (a2), (ans), a*, a. be the upper and lower sequences together with their
limits. We call a* the upper limit of the sequence (a,) and a, the lower limit of
the sequence (a,). If they are equal, a* = a,, we say that L = a* = a, is the
limit of (a,), and we write

lima,=L.

n/'oo
Alternatively, we say a, approaches L, and we write a, = L asn /' 00 or just
a, — L. If they are not equal, a* # a., we say that (a,) does not have a limit.

If (a,) is monotone, let L be its limit as a monotone sequence. Then, its upper
and lower sequences are equal to itself and the constant sequence (L, L,...).
Thus, its upper limit is L, and its lower limit is L. Hence, L is its limit according
to the second definition, In other words, the two definitions are consistent.
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Let us look at an example. Take @, = (—1)"/n,n > 1, or

1 11
(a,.) = (—1, ‘i, —3, Z, . .) 5

1111
* —_— — — — —
(an)—(Z’ 2’ 4, 4I )
1
3

1 1 1
(all*)= (_l’_ ’_3 _gs _§’~“)'

Hence, a* = a, = 0, thus, a, — 0.

A constant sequence is a sequence of the form (a, a,...) where a is a fixed
real. Here @, = a,. = a foralln > 1. Hence, a* = a, = a, hence, L = a.

Not every sequence has a limit. For example (1,0, 1,0, 1,0, ... ) does not have
a limit. Indeed, here,a; = 1 and a,, =0 foralln > 1, hence,a, =0 < 1 =a".

Limits of sequences satisfy simple properties. For example, a, — a implies
—a, — —a, and a, — L iff ay4,, — L. Thus, in a very real sense, the limiting
behaviour of a sequence does not depend on the first N terms of the sequence, for
any N > 1. Here is the ordering property for sequences.

Then,

Theorem. Suppose that (a,), (b,), and (c,) are sequences witha,, < b, < c, for
alln> 1. Ifb, - K andc, - L, then, K < L. Ifa, - L and ¢, — L, then,
b, — L.

Note that, in the second assertion, the existence of the limit of (b,) is not
assumned, but is rather part of the conclusion. Why is this theorem true? Well,
¢} is an upper bound for the set {c; : k > 1}. Since by < ¢ for all k, ¢} is an
upper bound for {b; : k > 1}. Since by is the least such, b] < c]. Repeating
this argument with k starting at n, instead of at 1, yields b} < ¢ foralln > 1.
Repeating the same reasoning again yields b* < ¢*. If b, > K andc¢, = L,
then, b* = K andc* = L, so, K < L, establishing the first assertion. To establish
the second, we know that b* < ¢*. Now, set C, = —a, and B, = —b,, for all
n = 1. Then, B, < C, for all n > 1, so, by what we just learned, B* < C*. But
B* = —b, and C* = —a,, 50, a, < b,. We conclude thata, < b, < b* < c*. If
a,— Landc, - L,then,a, =Landc*=L,hence,b, =b*=L. O

As an application, 27" — 0 asn / oosince 0 < 2™ < 1/nforalln > 1.

o B ) 1 1 .
Similarly, lim,, e (—’; - ;5) = 0 since
1 1 1 1 1
—N i Sy A .l
n~ n*"n n2 " p

foralln >1and £1/n — Oasn / oo.

Let (a,) be a sequence with nonnegative terms. Often the ordering property is

used to show that @, — 0 by finding a sequence (e,) satisfying 0 < a, < e, for
alln >1ande, —» 0.
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Below and throughout the text, we will use the following easily checked fact:
Ifa and b are reals and a < b + € for all real € > 0, then, a < b. Indeed, either
a < bora > b. If the latter case occurs, we may choose € = (a — b)/2 > 0,
yielding the contradictiona = b + (a — b) > b + €. Thus, the former case must
occur, or a < b. Moreover, ifa and b are realsandb <a < b+ € foralle > 0,
then, a = b.

Throughout the text, € will denote a positive real number.

Theorem. Ifa, — a andb, — b witha, b real, then, max(a,, b,) — max(a, b)
and min(a,, b,) — min(a, b). Moreover, for any sequence (a,) and L real,
a, — L iffa, — L — O iff|la, — L} — 0.

Let ¢, = max(a,, b,), n > 1, c = max(a, b), and let us assume, first, that
the sequences (a,), (b,) are decreasing. Then, their limits are their infs, and
cn = max(ap, b,) > max(a, b) = c. Hence, setting ¢, = inf{c, : n > 1}, we
conclude that ¢, > c. On the other hand, given € > 0, there are n and m satisfying
a, <a-+e€and b, < b+e¢€,s0, Chtm = Max(Qpi4m, bnm) < max(a,, b,) <
max(a + €, b + €) = ¢ + €. Thus, ¢, < ¢ + €. Since € > 0 is arbitrary and we
already know c, > ¢, we conclude that c, = c. Since (c,) is decreasing, we have
shown that ¢,, — c.

Now, assume (a,), (b,) are increasing. Then, their limits are their sups, and
cn = max(a,, b,) < max(a, b) = c¢. Hence, setting c* = sup{c, : n > 1}, we
conclude that ¢* < c¢. On the other hand, given € > 0, there are » and m satisfying
a, > a— € and b, > b — €, S0, Chym = MaxX(Anym» bnym) = max(a,, bn,) >
max(a — €, b — €) = ¢ — €. Thus, ¢* > ¢ — €. Since € > 0 is arbitrary and we
already know ¢* < ¢, we conclude that ¢* = c. Since (c,) is increasing, we have
shown that ¢, — c.

Now, for a general sequence (a,), we have (a;) decreasing, (a,,) increasing,
and

max(ans, bn) < €n < max(a,,by), n=1.

Thus, (c,) lies between two sequences converging to ¢ = max(a, b). By the
ordering property, we conclude that ¢, —> max(a, b).

Since min(a, b) = — max(—a, —b), the second assertion follows from the first.

For the third assertion, assume, first, a, — L, and set b, = a, — L. Since
sup(A —a) = supA — a and inf(A —a) = infA —a, b, = a; — L, and
b,s = an.— L. Hence, b* = a*—L = 0,andb, = a,—L = 0. Thus,a,—L — 0.
Ifa, — L — 0, then, L —a, — 0. Hence, |a, — L| = max(a,—L,L —a,) = 0
by the first assertion. Conversely, since

—lan—LISan_LSIan_le nZI.

la, — L] — O implies a, — L — 0, by the ordering property. Since a, =
(a, — L) + L, this impliesa, — L. 0O

Often this theorem will be used to show thata,, — L by finding a sequence (e,)
satisfying |a, — L| < e, and e, — 0. For example, let A C R be.bounded above.
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Then, sup A — 1/n is not an upper bound for A, hence, for each n = 1, there isa
real x, € A satisfyingsupA —1/n < x, < sup 4, hence, |x, —sup A| < 1/n. By
the above, we conclude that x,, — sup A. When A is not bounded above, for each
n > 1, thereisarealx, € A satisfyingx, > n. Then, x, — 0o = sup A. Ineither
case, we conclude, if A C R, there is a sequence (x;) C A with x, — sup A.
Similarly, if A C R, there is a sequence (x,) C A with x, —> inf A.

Now we derive the arithmetic properties of limits.

Theorem. Ifa, — a and c is real, then, ca, —> ca. Leta, b be real. Ifa, — a,
b, — b, then, a, + b, — a + b and a,b, — ab. Moreover, if b # O, then,
an/b, — a/b.

If ¢ = 0, there is nothing to show. If ¢ > 0, set b, = ca,. Since sup(cA) =
csup A and inf(cA) = cinf A, b} = ca}, byy = Cane, b* = ca*, b, = ca,.
Hence, a, — a implies ca, — ca. Since (—c)a, = —(ca,), the case with ¢
negative follows.

To derive the additive property, assume, first, thata = b = 0. We have to show
that a, + b, — 0. Then,

2min(a,, b,) < a, + by, < 2max(a,, b,), n=1.

Thus, a, + b, lies between two sequences approaching 0, so, a, + b, — 0. For
general a, b, apply the previous to @, = a,, — a, b}, = b, — b.

To derive the multiplicative property, first, note thata;, < a, < ay, so, |a,| <k
for some k, i.e., (a,) is bounded. Use the triangle inequality to get

lanb, — ab| = |(a, —a)b + (b, — b)a,| < |bl la, — al + la,| |b, — b|
< |blla, — a| + k|b, — b|, n>1.

Now, the result follows from the additive and ordering properties.

To obtain the division property, assume b > 0. From the above, a,b—ab,, — 0.
Since b, — b, by, /7 b, so, there exists N > 1 beyond which b, > by, > O for
n > N. Thus,

an Qa . lanb - abnl < |anb b abnl

bn b B Ibnl Ibl - bN*b

Thus, |a, /b, —a/b| lies between zero and a sequence approaching zero. The case
b < O is entirely similar. 0

In fact, although we do not derive this, this theorem remains true when a or b
are infinite, as long as we do not allow undefined expressions, such as co — oo
(the allowable expressions are defined in §1.2).

As an application of this theorem,

0<

. n>N.

1
. mP+1 . 2t 240
lim = lim = =2.
n/oo n2 —2n +1 n/ool_g+l 1-2.040
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If (a,) is a sequence with positive terms and b, = 1/a,, then, a, — 0iff b, —
oo (Exercise 3). Now, leta > 1andsetb =a—1. Then,a" = (1+b)" > 1+nb
for all n > 1 (Exercise 6 of §1.4). Hence,a" /' 00. If 0 <a < 1,then,a=1/b
with b > 1, so, a" = 1/b" \{ 0. Summarizing,

e ifa > 1, then, a" / o0,
o ifa=1,then,a" =1foralln > 1, and
e if0 <a < 1, then,a" — 0.

Sometimes we say that a sequence (a,) converges to L if a, — L. If the
specific limit is not relevant, we say that the sequence converges or is convergent.
If a sequence has no limit, we say it diverges. More precisely, if the sequence (a,)
does not approach L, we say that it diverges from L, and we write a,, » L. From
the definition of a, — L, we see that a,, /+ L means either a* # L or a, # L.
This is so whether L is real or £o00.

Typically, divergence is oscillatory behavior, e.g., a, = (—1)". Here, the
sequence goes back and forth never settling on anything, not even oo or —oo.
Nevertheless, this sequence is bounded. Of course a sequence may be oscillatory
and unbounded, e.g., a, = (—1)"n.

Let (a,) be a sequence, and suppose that 1 < k; < k3 < k3 < ... isan
increasing sequence of distinct naturals. Set b, = ay_,n > 1. Then, (b,) = (ax,)
is a subsequence of (a,). If a, — L, then, a;, — L. Conversely, if (a,) is
monotone, a;, — L implies a, — L (Exercise 4).

Generally, if a sequence (x,) has a subsequence (xx, ) converging to L, we say
that (x,) subconverges to L.

Let (a,) converge to a (finite) real limit L, and let ¢ > O be given. Since
(an) is increasing to L, there must exist a natural N,, such thata,, > L — €
for n > N,. Similarly, there must exist N* beyond which we have a; < L + €.
Since @, < a, < a} foralln > 1, weobtain L — € < a, < L + € for
n > N = max(N*, N,). Thus, all but finitely many terms of the sequence lie in
(L — ¢, L + €) (Figure 1.3).

Note that choosing a smaller € > 0 is a more stringent condition on the terms.
As such, it leads to (in general) a larger N, i.e., the number of terms that fall
outside the interval (L — €, L + €) depends on the choice of € > 0.

Conversely, suppose that L — € < a, < L + € for all but finitely many terms,
for every € > 0. Then, for a given € > 0, by the ordering property, L —€ < a,, <
a’ < L + € for all but finitely terms. Hence, L —€ < a, < a* < L + €. Since
this holds for every € > 0, we conclude thata, = a* = L, i.e.,a, = L. We have
derived the following:

Theorem. Let (a,) be a sequence and let L be real. If a, — L, then, all but
finitely many terms of the sequence lie within the interval (L — €, L +€), for all
€ > 0. Conversely, if all but finitely many terms lie in the interval (L — ¢, L +¢€),
for alle > 0, then,a, — L. [
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L—e¢€ L L+e¢

Xy X3 X4 X5 X6 X2

FIGURE 1.3. Convergence to L.

From this, we conclude that, ifa, — L and L # 0, then, a, # O for all but
finitely many n.

We end the section with an application. Suppose that f : N — N is injective,
i.e., suppose that ( f (n)) = (a,) is asequence consisting of distinct naturals. Then,
f(n) = oo. Tosee this, note that (since f is injective) for each n natural, there are
only finitely many naturals k satisfying f(k) < n. Let k, = max{k : f(k) < n}.
Then, k > k, implies f(k) > n which implies f,(k, + 1) = inf{f (k) : k >
k,} = n. Hence, f.(k, + 1) / oo, asn 7 oo. Since (f.(n)) is monotone and
(f«(ka + 1)) is a subsequence of (fi(n)), it follows that f,(n) 7 oo,asn /" oo
(Exercise 4). Since f(n) > f.(n), we conclude that f(n) — oo.

Exercises 1.5

1. Fix N > 1 and (a,). Let (ay+n) be the sequence (ay+1.an+2, --.). Then,
a, /' Liffayyn // L,and a, \( L iff ayy, \y L. Conclude that @, — L iff
antN —> L.

2. fa, - L,then, —a, — —L.

3. fA c Rtisnonemptyand 1/A = {1/x : x € A}, then,inf(1/A) = 1/sup A,
where 1/00 is interpreted here as 0. If (a,) is a sequence with positive terms and
b, = 1/a,, then, a, — 0iff b, — oo.

4. If a, — L and (a, ) is a subsequence, then, a;, — L. If (a,) is monotone and
a;,, — L,then,a, — L.

5. Ifa, — L and L # 0, then, a, # 0 for all but finitely many n.

6. Leta, = +/n+1— 4/n,n > 1. Compute (a}), (an:), a*, and a,. Does (a,)
converge?

7. Let (a,) be any sequence with upper and lower limits a* and a,. Show that
(an) subconverges to a* and subconverges to a,, i.e., there are subsequences (ay,)
and (a;,) satisfying a;, — a* and a;, — a,.

8. Suppose that (a,) diverges from L € R. Show that there is an € > 0 and a
subsequence (a, ) satisfying |ax, — L| > € foralln > 1.

9. Let (x,) be asequence. If (x,) subconverges to L, we say that L is a limit point
of (x,). Show that x, and x* are the least and the greatest limit points.

10. Show that a sequence (x,) converges iff (x,) has exactly one limit point.

11. Given f : (a,b) — R, let M = sup{f(x) : a < x < b}. Show that there is
a sequence (x,) with f(x,) = M. (Consider the cases M < oo and M = o0.)
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12. % Define (d,) by d; = 2 and

1 2
d, = - —1, >1,
n+1 2‘(dn'|‘dn) n>1

and sete, =d, — V2, n > 1. By induction, show thate, > 0 forn > 1. Also
show that

2
e
eny1 < ——= foralln > 1.

242
(First, check that, for any real x > 0, one has (x 4+ 2/x)/2 > +/2.)
13. % Let0 < x < 1 be irrational, and let (g,) be as in Exercise 16 of §1.3. Let

gn-1 + —

Gn
Let x" and x;, denote the continued fractions starting with 1/(g2 + ..., i.e., with
the top layer “peeled off.” Then, 0 < x,, x’,x/, < 1.

(1) Show that |x — x,| < xxp|x" — x|, n > 1.

(2) Iterate (1) to show that |[x — x,| <1/g,,n > 1.

(3) Show that x < (g2 + 1)/(g2 +2), x’ < (g3 +1)/(g3 + 2), etc.
(4) If N of the g;’s are bounded by c, iterate (1) and use (3) to obtain

N
[x — x,| = (C+1) ’
c+2

for all but finitely many n.

Conclude that |[x — x,| = 0 asn / oo. (Either g, — oo or g, 7 00.)

§1.6 Nonnegative Series and Decimal Expansions

Let (a,) be a sequence of reals. The series formed from the sequence (a,) is
the sequence (s,) with terms 57 = aj, s2 = a1 + a3, and, foranyn > 1, 5, =
ay + a, + - - - + a,. The sequence (s,) is the sequence of partial sums. The terms
a, are called summands, and the series is nonnegative if a, > 0 foralln > 1. We
often use sigma notation, and write s, = Z;::, ay. Series are often written

ay+ay+....
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In sigma notation, 3" a, or 32 a,. If the sequence of partial sums (s,) has a

limit L, then, we say the series sums or converges to L, and we write

o0
L=a+a+---= Za,,.

n=1
Then, L is the sum of the series. By convention, we do not allow oo as limits for
series, only reals. Nevertheless, for nonnegative series, we write )_a, = 00 to
mean ) _ a, divergesand ) _a, < ootomean )_ a, converges. As with sequences,
sometimes it is more convenient to start a series from » = 0. In this case, we write
Y =0 Gn-

Let L = ) -2, an be a convergent series and let s, denote its nth partial sum.
The nth tail of the seriesis L —s, = Y _po 41 - Since the nth tail is the difference
between the nth partial sum and the sum, we see that the nth tail of a convergent
series goes to zero:

o0
lim Z a, =0.
n/ ot

Let a be real. Our first series is the geometric series

o0
l+a+a2+---=Za".

n=0

Here the nth partial sum s, = 1+ a + - - - 4+ a" is computed as follows:
as,=a(l+a+---+a)=a+a*+---+a" ' =5, +a" — 1.

Hence,

1-— an+l
Sp = l_—a, a 75 1.
If a = 1, then, s, = n,so,s, /co. Iflal <1,a" — 0,s0,s, = 1/(1 —a). If
a > 1, then, a" / 00, so, the series equals oo and hence, diverges. If a < —1,
then, (a”) diverges, so, the series diverges. If a = —1, s, equals 0 or 1 (depending
on n), hence, diverges, hence, the series diverges. We have shown

= 1
Y a"=—, if |a| < 1,
= 1—a
n=0
and "> o a" diverges if |a] > 1.
To study more general series, we need their arithmetic and ordering properties.

Theorem. If ) "a, = Land }_ b, = M, then, } (a, + b,) = L+ M. If
Y a,=L,ceR,andb, = cay, then, ) b, = cL = c(3_a,). Ifa, < b, < c,
andY a, =L =) c,, then,) b, =L.

To see the first property, if sp, 1, and r, denote the partial sums of }_a,, 3" b,,
and ) cp, then, s, + , equals the partial sum of )_(a, + b,). Hence, the result
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follows from the corresponding arithmetic property of sequences. For the second
property, note that ¢, = cs,. Hence, the result follows from the corresponding
arithmetic property of sequences. The third property follows from the ordering
property of sequences, since s, <t, <r,,s, = L,andr, —> L. O

Now, we describe the comparison test which we use below to obtain the decimal
expansions of reals.

Theorem (Comparison Test). Let ) _a,, Y b, be nonnegative series with a,, <
bn foralln > 1. IfY_b, < 0o, then, ) _a, < oo. IfY_a, = oo, then, Y b, = 0.

Stated this way, the theorem follows from the ordering property for sequences
and looks too simple to be of any serious use. [J In fact, we use it to express
every real as a sequence of naturals. Recall that the digits are defined in §1.3.
Defined =94 1.

Theorem. Ifd,, d,, ... is a sequence of digits, then,

o0
> dd

n=1

sums to areal x,0 < x < 1. Conversely, if0 < x < 1, there is a sequence of
digits dy, da, . . ., such that the series sums to x.

The first statement follows by comparison, since

- —n . —n 5 9 -n
D dd" <) 94" =3 =d

n=1 n=1 n=0

ONoyn_ 2.1
=z2.4 —d 1—(1/d)_1'

To establish the second statement, if x = 1, we simply take d, = 9foralln > 1.
If0 < x < 1, letd,; be the largest integer < dx. Then, d; > 0. This way we obtain
a digit d; (since x < 1) satisfying d; < dx < d) + 1. Now, set x; = dx — d;.
Then, 0 < x; < 1. Repeating the above process, we obtain a digit d, satisfying
d, < dx; < d, + 1. Substituting yields d + ddy < d*x < da +dd; + 1 or
drd~2 +dd™" < x < dpd~? +did~! + d~2. Continuing in this manner yields a

sequence of digits (d,) satisfying

(ded"") <x< (ded”‘) +d™", n=>=1.
k=1 k=1

Thus, x lies between two sequences converging to the same limit. [J

In fact, two distinct sequences of digits yield the same real in [0, 1] under only
very special circumstances. The sequence (d,) is the decimal expansion of the
real 0 < x < 1. As usual, we write

X = .d1d2d3....
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Thus 1/3 = .333....

To extend the decimal notation to any nonnegative real, for each x > 1, there
is a smallest natural N, such thatd—"Vx < 1. As usual, ifdVx = .did2..., we
write

X = dldz hla .dN.dN+1dN+2 csey

the decimal point (.) moved N places. For example 1 = 1.00... and d =
10.00.... In fact, x is a natural iff x = dd,...dy.00.... Thus, for naturals,
we drop the decimal point and the trailing zeros, e.g., 1 = 1, d = 10. Note that
we have two decimal representations of 1,1 = .99--. = 1.00.... This is not an
accident (Exercise 2).

The natural d, the base of the expansion, can be replaced by any natural > 1.
Then, the digits are (0, 1, ...,d — 1), and we would obtain d-ary expansions. In
§4.1, we use d = 2 with digits (0, 1) leading to binary expansions and d = 3 with
digits (0, 1, 2) leading to ternary expansions. In §5.2, we discuss d = 16 with
digits (0,1,...,9, A, B,C, D, E, F) leading to hexadecimal expansions. This
completes our discussion of decimal expansions.

How can one tell if a given series converges by inspecting the individual terms?
Here is a necessary condition.

Theorem (nth Term Test). IfY_a, = L € R, then, a, — 0.

To see this, we know thats,, — L, and, so,s,—) — L. By the triangle inequality,
lan| = |sp — Su—1l = |($n = LY+ (L —Sp-1)| < ISu — L| +|Spn1 — L] = 0. O

However, a series whose nth term approaches zero need not converge. For
example, the harmonic series

Z-—1+l+1+ = 00
=1+5+3 :

n=1

To see this, use comparison as follows,

i1=1+1+1+1+1+l +
— 1 2 3 4 5
1 1

4

>1+i+241, 1
2 4 8
—l+l+l+l+---=oo

2 2 2 )

On the other hand, let0! = 1 and letn! = 1-2-3-....n (n factorial) forn > 1.
Then, the nonnegative series

1+1+1 1
o! 2'+3+

1 1
-6"+7 §+
1 1 1
+§ g‘l’g
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converges. To see this, check that 2*~! < n! by induction. Thus,

1+i-1-<1+}°i2-"+‘=3
n! —

n=1l "° n=1

and, hence, is convergent. Since the third partial sum is s3 = 2.5, we see that the
sum lies in the interval (2.5, 3].

A series is telescoping if it is a sum of differences, i.e., of the form

D @ —ann) = (a1 —a) + (a2 —as) + (@s —as) +....

n=l1

In this case, the following is true.

Theorem. If (a,) is any sequence converging to zero, then, the corresponding
telescoping series converges, and its sum is a,.

This follows since the partial sums are

=@ —az)+ (@ —a3)+---+(a, —any1) = a1 — apy
andag,.y = 0. O
As an application, note that
1 1 1

T2ttt =1

X 1 2 /1 1
gn(n+l)=zl(;—n+l)=l'

n=

since

Another application is to establish the convergence of

Thus,

1 1 1
2 + > + = 32 +.e <2,
Expressing this sum in terms of familiar quantities is a question of a totally different
magnitude. Later (§5.6), we will see how this is done.
More generally,
o~ 1
Z m < o0

n=1

follows in a similar manner, for any N > 1.
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Exercises 1.6

1. LetO < x < 1bereal. Then, x = .dyd, . .. isin Q iff there are n, m > 1, such
thatd;,, = d; for j > m, i.e., the sequence of digits repeats every n digits, from
the (m + 1)st digit on.

2. Suppose that .d\d,--- = .ejez... are distinct decimal expansions for the
same real, and let N be the first natural with dy # ey. Then, eitherdy = ey +1,
d, =0,ande, =9fork > N,orey =dy+1,e, =0,and d;, =9 fork > N.
Conclude that x € R has more than one decimal expansion iff 10Vx € Z for some
N e NU{0}.

3. Show that2"} <nl,n> 1.

4. Fix N > 1. Show that

1/N 1
y (= <l—-——,n>1
D \z+1) ' var "0
1

1/N 1/N
2 (n+1YN —pl/¥N > N(n+1)(N-1)/N’"21’and

1 1
@) 302 —w < N Xali(@n — un) where a, = —rgn 2 1.

Conclude that Zﬁil Fl-llW < 00. (Use Exercises 6 and 7 of §1.4 for (1)).

5. % Let (d,) and (e,) be as in Exercise 12 of §1.5. By induction, show that
ens2 <107,  n>1.

This shows that the decimal expansion of d,.2 agrees® with that of V202"
places. For example, dy yields +/2 10 atleast 128 decimal places. (First, show that
e3 < 1/100. Since the point here is to compute the decimal expansion of /2, do
not use it in your derivation. Use only 1 < +/2 < 2 and (+/2)? = 2.)

6. % Let C C [0, 1] be the set of reals x = .d1d>d5 ... whose decimal digits
d,,n > 1, are zero or odd. Show that (§1.2) C 4+ C = [0, 2].

§1.7 Signed Series and Cauchy Sequences

A series is signed if its first term is positive, and at least one of its terms is negative.
A series is alternating if it is of the form

0
YD la =g —ataz+ (-1 a, +
n=}

with g, positive for all n > 1. Alternating series are particularly tractable, but,
first, we need a new concept.

This algorithm was known to the Babylonians.
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A sequence (not a series!) (a,) is Cauchy if its terms approach each other, i.e.,
if there is a positive sequence (e,) converging to zero, such that

8n+m — an| < en, forallm,n > 1.

If a sequence is Cauchy, there are many choices for (e,). Any such sequence (e,)
is an error sequence for the Cauchy sequence (a,).

It follows from the definition that every Cauchy sequence is bounded, |a,;| <
lam — a1l + la;] < e1 + |a;| forallm > 1.

It is easy to see that a convergent sequence is Cauchy. Indeed, if (a,) converges
to L, then, b, = |a, — L| — 0, so (§1.5), b} — 0. Hence, by the triangle
inequality

|@n+m — an| < l@p4m — L| + la, — L| $b:+b:, m>0,n>1.

Since 2b} — 0, (2b}) is an error sequence for (a,), so, (a,) is Cauchy.

The following theorem shows that if the terms of a sequence “approach each
other”, then, they “approach something”. To see that this is not a self-evident
assertion, consider the following example. Let a, be the rational given by the
first n places in the decimal expansion of +/2. Then, |a, — /2| < 10~, hence,
a, — /2, hence, (a,) is Cauchy. But, as far as Q is concerned, there is no limit,
since +/2 ¢ Q. In other words, to actually establish the existence of the limit, one
needs an additional property not enjoyed by Q, the completeness property of R.

Theorem. A Cauchy sequence (a,) is convergent.

With the notation of §1.5, we need to show that a, = a*. But this follows since
the sequence is Cauchy. Indeed, let (e,) be any error sequence. Then, for all
n>1m=0,j=>0,

Qpnim — Qntj = @n4m — an) + (Gn — an+j) < 2ey.

For n and j fixed, this inequality is true for all m > 0. Taking the sup over all
m > 0 yields

*
an _ an+j 5 28,,

forall j > 0, n > 1. Now, for n fixed, this inequality is true for all j > 0. Taking
the sup over all j > 0 and using sup(—A) = —inf A yields

Osa:—an*szen, n_>_1.

Letting n 7 oo yields 0 < a* — a, < 0, hence, a* =a,. U

A series Y a, is said to be absolutely convergent if Y lan| converges. For
example, below, we will see that Z:(—l)"‘l /n converges. Since )_ 1/n diverges,
however, Z:(—l)"‘l /n does not converge absolutely. A convergent series that is
not absolutely convergent is conditionally convergent.

If }_ |an| is known to converge, one expects Y a, to converge, because of the
possibility of cancellation. In fact, this is the case.
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Theorem. If)_ a, converges absolutely, then, Y a, converges.

To see this, let (s,,) and (S, ) denote the sequences of partial sums corresponding
to Y_a, and ) _ |a,|. Since Y |a,| converges, we know that (S,) is Cauchy. Let
(er) be an error sequence for (S,). To show that (s,) converges, it is enough to
show that (s,) is Cauchy. But, by the triangle inequality,

ISn4+m — Snl = lans1 + - - + Gpaml
< |ang1l + - - + |Gnpm| = Sppm — Sn < €ns
so, (e,) is an error sequence for (s,). O

A typical application of this result is as follows. If (a,) is a sequence of positive
reals decreasing to zero and (b,) is bounded, then,

(7.1) > (@n = an41)by
n=]

converges absolutely. Indeed, if |b,| < C,n > 1, is a bound for (b,), then,

o0 00
D 1@n = @ns1)bal £ _(@n — n41)C = Cay < 00

n=l n=1

since the last series is telescoping.
To extend the scope of this last result, we will need the following elementary
formula:

N N-1
(7.2) @by + ) ay(by — bn_1) = ) _(@n — @n1)ba + anby.
n=2 n=1

This important identity, easily verified by decomposing the sums, is called sum-
mation by parts.

Theorem (Dirichlet Test). If (a,) is a positive sequence decreasing to zero and
(cn) is such that the sequence b, = ¢y +c2 + - -+ + ¢, 1 > 1, is bounded, then,
,‘f-_; anc, converges and

(7.3) Zancn = Z(an — Gn41)by.
n=]

n=l

This is an immediate consequence of letting N ' oo in (7.2) since b, —b,_; =
¢, forn > 2. 0O An important aspect of the Dirichlet test is that the right side
of (7.3) is, from above, absolutely convergent, whereas the left side is often only
conditionally convergent. For example, taking @, = 1/n and ¢, = (-1)""},
n > 1,yields (b,) = (1,0, 1,0, ...). Hence, we conclude not only that

1 1 1

l— ==
2+3 4+
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converges but also that its sum equals the sum of the absolutely convergent series
obtained by grouping the terms in pairs.
Now, we can state the situation with alternating series.

Theorem (Leibnitz Test). If (a,) is a positive decreasing sequence with a, \ 0,
then,

(7.49) ay—az+az—as+...

converges to a limit L satisfying 0 < L < a;. If, in addition, (a,) is strictly
decreasing, then,0 < L < ay. Moreover, if s, denotes the nth partial sum,n > 1,
then, the error |L — s,| at the nth stage is no greater than the (n + 1)st term
Gn1, With L > s, or L < s, according to whether the (n + 1)st term is added or
subtracted.

For example,

1 1 1 1
(7.5) L=1 3+5 7+9
converges, and 0 < L < 1. Infact, since s, = 2/3 and s3 = 13/15,2/3 < L <
13/15.
In the previous section, estimating the sum of
1 1 1
1+ 1 -} 2 + 31 +...
to one decimal place involved estimating the entire series. Here, the situation is
markedly different: The absolute error between the sum and the nth partial sum
is no larger than the next term a,,4;.

To derive the Leibnitz test, clearly, the convergence of (7.4) follows by taking
cn = (—1)""! and applying the Dirichlet test, as above. Now, the differences
a, —ap41,n = 1,3,5, ..., are nonnegative. Grouping the terms in (7.4) in pairs,
we obtain L > 0. Similarly, the differences —a, + a,41, 2 = 2,4,6,..., are
nonpositive. Grouping the terms in (7.4) in pairs, we obtain L < a;. Thus,
0 <L <a;. But

(—D"(L —$p) = @41 —Qny2 + Cn43 —Gpypa+..., n>1.

Repeating the above reasoning, we obtain 0 < (—1)"(L — s,) < an41, which
implies the rest of the statement. If, in addition, (a,) is strictly decreasing, this
reasoning yields0 < L < a;. O
If )" a, converges absolutely and s, = ) ;_, lak|, then, by the triangle inequal-
ity,
m 00

lsm—sal = D lal < Y lal,  m>n,

k=n+1 =n-1

S0, ep = Z;‘;,, wlailn=1, is an error sequence for (sy).
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Our next topic is the rearrangement of series. A series ) A, is a rearrangement
of a series Y _ a, if there is a bijection (§1.1) f : N — N, such that A, = as@)
for all n > 1. Absolutely convergent series and conditionally convergent series
behave very differently under rearrangements.

Theorem. If Y a, is absolutely convergent, any rearrangement y A, converges
absolutely to the same limit. IfY_ a, is conditionally convergent and ¢ is any real
number, then, there is a rearrangement ) _ A, converging to c.

To see this, first assume Y _ |a,| is convergent, and lete, = }:‘;‘;,, s lajl,n> 1

Then, (e,) is an error sequence for the Cauchy sequence of partial sums of ) _ |a,|.
Since (§1.5) (f (n)) is a sequence of distinct naturals, f(rn) — oo. In fact (§1.5),
if we let f.(n) = inf{f(k) : k > n}, then, f,(n) 7 oo. To show that )_|A,|is
convergent, it is enough to show that ) _ |A,| is Cauchy.

To this end,

lagmanl +lafmizl + - - +lagmeml
< laswen| + |agoina| + |anmenee] + - = efmen-

which approaches zero, as n 7 co. Thus, )_ |4, | is Cauchy, hence, convergent.
Hence, )_ A, is absolutely convergent.

Now, let s,,, S, denote the partial sums of )_a, and }_ A,, respectively. Let
E, = Y ;2,41 )Akl, n = 1. Then, (E,) is an error sequence for the Cauchy
sequence of partial sums of ) _ |A,|. Now, in the difference S, — s, there will be
cancellation, the only terms remaining being of one of two forms, either A; = asy,)
with f(k) > n or a; with k = f(j) with j > n (this is where surjectivity of f is
used). Hence, in either case, the absolute values of the remaining terms in S,, — s,
are summands in the series e, + E,, so,

ISll_sn|Sen+En_>o, asn/OO.

This completes the derivation of the absolute portion of the theorem.

Now, assume that )_a, is conditionally convergent, and let ¢ > 0 be any
nonnegative real. Let (aF), (a;") denote the positive and the negative terms in the
series ) a,. Then, we must have ) a} = oo and Y _a- = —oo. Otherwise,
Y a, would converge absolutely. Moreover, at — 0 and a, — Osincea, — 0.
We construct a rearrangement as follows: Take the minimum number of terms
a;} whose sum s" is greater than c, then, take the minimum number of terms a;”
whose sum s; with s;" is less than ¢, then, take the minimum number of additional
terms a;F whose sum s;” with s is greater than c, then, take the minimum number
of additional terms a,” whose sum s, with 53 is less than c, etc. Because a;* — 0,
a; — 0,) atf =o00,and )" a,; = —oo, thisrearrangement of the terms produces
a series converging to c. Of course, if ¢ < 0, one starts, instead, with the negative
terms. O

We can use the fact that the sum of a nonnegative series is unchanged under
rearrangements to study series over other sets. For example, let N2 = N x N be
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(§1.1) the set of ordered pairs of naturals (m, n), and set

1
(7.6) )2 o2
(m,n)eN? m>+n
What do we mean by such a series? To answer this, we begin with a definition.
A set A is countable if there is a bijection f : N — A, i.e., the elements of A
form a sequence. If there is no such f, we say that A is uncountable. Let us show
that N2 is countable:

(1,D),1,2,2,1,(1,3),(2,2),3,1),(1,4,2,3),(3,2,&1),....

Here, we are listing the pairs (m, n) according to the sum m + n of their entries.
It turns out that Q is countable (Exercise 2), but R is not countable (Exercise 4).
Every subset of N is countable or finite (Exercise 1). Thus,if f : A — B is
an injection and B is countable, then, A is finite or countable. Indeed, choosing a
bijection g : B — N yields a bijection g o f of A with the subset (g o f)(A) C N.
Similarly, if f : A — B is a surjection and A is countable, then, B is countable
or finite. To see this, choose a bijection g : N — A. Then, fog: N — B
is a surjection, so, we may define # : B — N by setting h(b) equal to the least
n satisfying flg(n)] = b, h(b) = min{n € N : flg(n)] = b}. Then, h is an
injection, and, thus, B is finite or countable.
Let A be a countable set. Given a positive function f : A — R, we define the
sum of the series over A
> f)

as the sum of ) _°2 . f(a,) obtained by taking any bijection of A with N. Since
the sum of a positive series is unchanged by rearrangement, this is well defined.
As an exercise, we leave it to be shown that (7.6) converges.

Series over N2 are called double series. A useful arrangement of a double series
follows the order of N2 displayed above,

This is the Cauchy order.

Theorem. For (anm.) positive,

a7 Y, Gm= i ( > a,-,-) = i (iamn) = i (i amn) :

(m.n)EN7 k=1 i+j=k+l n=1 \m=1 m=1 \n=1

To see this, recall that the first equality is due to the fact that a positive double
series may be summed in any order. Since the third and fourth sums are similar,
it is enough to derive the second equality. To this end, note that for any natural
K, the set Ax C N2 of pairs (i, j) withi + j < K + 1 is contained in the set



36 1. The Set of Real Numbers

Bun C N2 of pairs (m, n) withm < M, n < N, for N, M large enough (Figure
1.4). Hence,

(2 ) < 2 (Bew) <5 (Sem):

Letting K /7 00, we obtain

i( 5 ) <z;(z;a,,m).

k=1 \i+j=k+1 n=]

Conversely, forany N, M, Byy C Ak for K large enough, hence,

3 (Saw) <2 ( 2 w) <5 ( T o)

n=1 k=1 \i+j=k+1 k=1 \i+j=k+1
Letting M / oo,
o0 N o0
$( = )22 (Sam)
k=1 \i+j=k+1 n=l \m=1
Letting N /' oo,

S 2 )23 (Sem).
i+j=k+1
This yields (7.7). O

(1.7

Az

Bes Bes
A7 ¢

an @,1

FIGURE 1.4. The sets By and Ag.

To give an application of this, note that, since ) 1/n'*V¥ converges, by com-
parison, so does

Z(s)—Z— s> 1.

n—2
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(In the next chapter, we will know what n* means for s real. Now, think of s as
rational.) Then, (7.7) can be used to show that

o0

(7.8) ) l_ T =Z()+Z(2) + Z(3s) +...

n=2

As another application, we describe the product of two series }_a, and Y_ b,.
Given (7.7), it is reasonable to define their product or Cauchy product as the series

ic,,:i( > a,-b,-).

n=1 n=1 \i+j=n+1
For example, ¢; = a1by, ¢2 = a1by + axb,, ¢c3 = ay\bs + azby + a3by, and
ch=a1b, + a1 +---+a,by, n>1.

Then, (7.7) shows that the Cauchy product sums to ab if both series are nonnegative
and)_a, = aand )_ b, = b. Itturns out this is also true for absolutely convergent
signed series: If ) _a, and ) _ b, converge absolutely, then, their Cauchy product
converges absolutely to the product of their sums (Exercise 7).

If a; + a3 + a3 + ... is absolutely convergent, its alternating version is a; —
az + a3z — ... . For example the alternating version of

1
=1+x+x%+...
1—x
equals
1
=1—x+x2—... .
14+x

Clearly, the alternating version is also absolutely convergent and the alternating
version of the alternating version of a series is itself. Note that the alternating
version of a series ) _ a, need not be an alternating series. This happens iff ) _ a,
is positive.

Exercises 1.7

1. If A C B and B is countable, then, A is countable or finite. (If B = N, look at
the smallest element in A, then, the next smallest, and so on.)

2. Show that Q is countable.

3. If Ay, Az, ... is a sequence of countable sets, then, | -, Ax is countable.
Conclude that Q x Q is countable.

4. Show that [0, 1] and R are not countable. (Assume [0, 1] is countable. List the
elements as ay, az, . .. . Using the decimal expansions of a;, az, . . . , construct a
decimal expansion not in the list.)

5. Show that (7.6) converges.
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6. Derive (7.8).

7. If Y_a, and }_ b, converge absolutely, then, the Cauchy product of ) a, and
> ba converges absolutely to the product (3" a,) (3 bs)-

8. Let }_a, and }_ b, be absolutely convergent. Then, the product of the alter-
nating versions of }_a, and Y b, is the alternating version of the product of } _a,
and )_ b,,.

FIGURE 1.5. The golden mean.

9. % Given a sequence (g,) of naturals, let x,, be as in Exercise 13 of §1.5. Show
that (x,,) is Cauchy, hence, convergent to an irrational x. Thus, continued fractions
yield a bijection between sequences of naturals and irrationals in (0, 1). From this
point of view, the continued fraction (Figure 1.5)

1 5 1
+/5 _ -

2 1
1+

1+
1+
1+

1

1+...

is special. This is the golden mean.
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Continuity

§2.1 Compactness in R and R?

An open interval is a set of reals of the form (a, b) = {x : a < x < b}. Asin§l.4,
we are allowing @ = —oo or b = 0o or both. A compact interval is a set of reals
of the form [a, b] = {x : a < x < b}, where a, b are real. The length of [a, b]
is b — a. Recall (§1.5) that a sequence subconverges to L if it has a subsequence
converging to L.

Theorem. Let [a, b] be a compact interval and let (x,) be any sequence in [a, b].
Then, (x,) subconverges to some x in [a, b].

To derive this result, assume, first, that a = 0 and b = 1. Divide the interval
I = [a,b] = [0, 1] into 10 subintervals (of the same length), and call them
Io, ..., Iy, ordering them from left to right (Figure 2.1). Pick one of them, say
I,,, containing infinitely many terms of (x,), i.e., {n : x,, € I} is infinite, and
pick one of the terms of the sequence in I; and call it xj. Then, the length of
I, is 1/10. Now, divide I, into 10 subintervals again ordered left to right and
called I, . . . , I,9. Pick one of them, say I,,4,, containing infinitely many terms
of the sequence, and pick one of the terms (beyond x;) in the sequence in I 4,
and call it x;. The length of I4, is 1/100. Continuing in this manner yields
I D Iy O Iya, D Igga, D ... and a subsequence (x,) where the length of
Ipa,..4,i8 107" and x;, € Iy,4,..q, for all n > 1. But, by construction, the real

X = .d1d2d3 o

lies in all the intervals 4,4, 4,, n = 1. Hence, |x, — x| < 107" — 0. Since (x;)
is a subsequence of (x,), this derives the result if [a, b] = [0, 1]. If this is not
so, the same argument works. The only difference is that the limiting point now

obtainedisa + x(b —a). O

Id]dz Id|
————— S e —

FIGURE 2.1. The intervals Iy,4,..4,-



40 2. Continuity

Thus, this theorem is equivalent to, more or less, the existence of decimal
expansions. If [a, b] is replaced by an open interval (a, b), the theorem is false as
it stands, since the limiting point x may be one of the endpoints, and, hence, the
theorem needs to be modified. A useful modification is the following.

Theorem. If (x,) is any sequence of reals, then, (x,) subconverges to some real
X or to 0o or to —oo.

To see this, consider the two cases (x,;) bounded and (x,) unbounded. In the
first case, we can find reals a, b with (x,) C [a, b]. Hence, by the previous
theorem, we obtain the subconvergence to some real x € [a, b]. In the second
case, if (x,) is not bounded above, for each n > 1, choose x;, satisfying x; > n. If
(xn) is not bounded below, for each n > 1, choose x, satisfying x; < —n. Then,
(x/) converges to oo or to —oo, yielding the subconvergence of (x,) to co or to
-o00. O

We will need a related result in R? in §4.2.

Recall that R? is the product R? = R x R = {(x, y) : x, y € R}. A compact
rectangle is a set in R? of the form [a, b] x [c,d] = {(x,y) :a < x < b,c <
y < d}, where a, b, c, and d are reals. An open rectangle is a set of the form
(a,b) x (c,d) ={(x,y) :a < x < b,c < x < d} (Figure 2.2). As usual, with
open rectangles, either a or ¢ may equal —oo, and either b or d may equal co. The
area of a compact rectangle [a, b] x [c,d] is (b — a)(d — c).

..-................
o

FIGURE 2.2. A and B are rectangles, but C is not.

Theorem. Let R be acompact rectangle andlet Q\, Q2, Q3, ... be any sequence
of open rectangles covering R, i.e.,

Rc|)on

n=

Then, there is a natural N, such that R C O, U Q2U...U Qy.

This theorem says that no matter what their shape or size, one neverreally needs
infinitely many open rectangles to cover (Figure 2.3) a given compact rectangle.
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FIGURE 2.3. A finite cover of R by rectangles.

A finite number always suffices. Note that the rectangles Q; may overlap, i.e.,
may not be disjoint.

Here the derivation is similar to the previous. We assume, first, that R =
[0, 1] x [0, 1] is a square, and we argue by contradiction: Suppose that there is no
finite subcollection of (Q,) covering R. Divide R into 100 = 10 - 10 subsquares
(of the same area) Rqo, ..., Rgg. Here, the subsquares are ordered from left to
right and bottom to top, i.e., d < d’ implies Ry, is to the left of Ry., and e < €’
implies Ry, is below Ry. Since there are finitely many subsquares, there is at
least one subsquare, call it Ry, , that is not covered by any finite subcollection of
(Qr). Divide Ry,., into 100 subsquares, ordered as above. At least one of them,
call it Ry,¢,4,e,, is DOt covered by any finite subcollection of (Q,). Continuing
in this manner, we obtain R D Rg,., D Ry,e,dre, O ... Where, for eachm > 1,
Ry, e,dye,..dne, has area 100~ and is not covered by any finite subcollection of
(0p). Let x and y be the reals

x=.dd>..., y=.ee....

Then, (x, y) liesin all the squares Ry,e,dze;...dne.» 1 = 1. Since, inparticular, (x, y)
lies in R, there is at least one rectangle Q; containing (x, y). Since Q; is open,
(x, y) lies in the interior of Q; and not on any of its sides. Since the dimensions of
Ry,e,dser...dme,, @pPToach zero as m /' 0o, we conclude that for m large enough we
have Ry, e,dyer..dne, C Qi- Butthisshows that Ry, aze,...d,e, €anbe covered by one,
hence, a finite subcollection of (Q,), contradicting the choice of Ry,e,dse,...dy e,
Thus, our initial assumption must be false, i.e., we conclude that there is a finite
subcollection Qi, ..., Qn covering R. If R is not a square, the same argument
works. The limiting point now obtained is (a + (b — a)x,c+ (d —c)y). O

If R is replaced by an open rectangle, the argument breaks down. If any of the
0,’s are replaced by compact rectangles, again the argument breaks down.

A rectangle should be thought of as the two-dimensional analog of an interval.
The first two theorems above are stated for intervals, and the third is stated for
rectangles. In fact, the results above extend to any dimension n > 1, and, then,
the criteria in these theorems are equivalent manifestations of the property of
compactness.
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Exercises 2.1

1. Find a sequence of open rectangles 0, O, ... , covering R = (0, 1) x (0, 1),
such that no finite subcollection Q,, ..., Oy covers R.

2. Find a compact rectangle Q; and a sequence of open rectangles Q2, O3, ...,
covering R = [0, 1] x [0, 1], such that no finite subcollection 0, ..., Oy covers
R.

3. In the derivation of the first theorem, suppose that the intervals are chosen, at
each stage, to be the leftmost interval containing infinitely many terms. In other
words, suppose that I, is the leftmost of the intervals /; containing infinitely many
terms, I,4, is the leftmost of the intervals I, ; containing infinitely many terms,
etc. In this case, show that the limiting point obtained is x,.

§2.2 Continuous Limits

Let (a, b) be an open interval, and let a < ¢ < b. The interval (a, b), punctured
atc,istheset(a,b) \{c}={x:a<x <b,x #c}.

Let f be a function defined on an interval (a, b) punctured atc,a < ¢ < b. We
say L is the limit of f(x) as x approaches c, and we write

lim f(x) =L

or f(x) —» L asx — c, if, for every sequence (x,) C (a, b) satisfying x,, # ¢
for all n > 1 and converging to ¢, f(x,) — L.

For example, let f(x) = x2, and let (a,b) = R. If x, — c, then (§1.5),
x2 — c¢2. This holds true no matter what sequence (x,) is chosen, as long as
x, = ¢. Hence, in this case, lim,_,. f(x) = c2.

Going back to the general definition, suppose that f is also defined at ¢. Then
the value f(c) has no bearing on lim,_,. f(x) (Figure 2.4). For example, if
f(x) =0forx # 0and f(0) is defined arbitrarily, then, lim,_,o f(x) = 0. Fora
more dramatic example of this phenomenom, see Exercise 1.

J©

~_ __—

FIGURE 2.4. The value f(c) has no bearing on the limit at c.

Of course, not every function has limits. For example, set f(x) = 1ifx € Q
and f(x) = 0if x € R \ Q. Choose any c in (a, b) = R. Since (§1.4) there
is a rational and an irrational between any two reals, for each n > 1 we can find
m€Qandi, e R\ Qwithc <r, <c+1/nandc < i, < ¢+ 1/n. Thus,
rn —> candi, — ¢, but f(r,) = 1and f(i,) = 0 foralln > 1. Hence, f has no
limit anywhere on R.
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Let (x,) be a sequence approaching b. If x, < b for all n > 1, we write

Xp —> b—. Let f be defined on (a, b). We say L is the limit of f(x) as x
approaches b from the left, and we write

lim fGx) =L,

if x, — b— implies f(x,) — L. In this case, we also write f(b—) = L. If
b = oo, we write, instead, lim,_, o f(x) = L, f(c0) = L, i.e., we drop the
minus.

Let (x,) be a sequence approaching a. ¥ x, > a for all n > 1, we write
xp —> a+. Let f be defined on (a,b). We say L is the limit of f(x) as x
approaches a from the right, and we write

lim, £ =L,

if x, = a+ implies f(x,) — L. In this case, we also write f(a+) = L. If
a = —00, we write, instead, lim,_,_o f(x) = L, f(—00) = L, i.e., we drop the
plus.

Of course, L above is either a real or =00.

Theorem. Let f be defined on an interval (a, b) punctured at ¢, a < ¢ < b.
Then, lim,_,. f(x) exists and equals L iff f(c+) and f(c—) both exist and equal
L.

If lim,_,. f(x) = L, then, f(x,) = L for any sequence x, — ¢, whether the
sequence is to the right, the left, or neither. Hence, f(c—) = L and f(c+) = L.

Conversely, suppose that f(c—) = f(c+) = L and x, — ¢ with x,, # c for
all » > 1. We have to show that f(x,) — L. Let f* and f, denote the upper
and lower limits of the sequence (f(x,)), and set f¥ = sup{f(xx) : k = n}.
Then, f; \u f*. Hence, for any subsequence (f;’), we have f’  f*. Now,
we have to show that f* = L = f,. Break up the sequence (x,) as the union
of two subsequences. Let (y,) denote the terms x; that are greater than ¢, and
let (z,,) denote the terms x; that are less than ¢, arranged in their given order.
Since f(c+) = L and y, — c+, we conclude that f(y,) — L, hence, its
upper sequence converges to L, sup;., f(»;) \ L. Since f(c—) = L and
zn — ¢—, we conclude that f(z,) — L, hence, its upper sequence converges to
L, sup;, f(zi) x L.

Foreachm > 1, let x;_ denote the term in (x,) corresponding to y,,, if the term
Ym appears after the term z,, in (x,). Otherwise, if z,, appears after y,,, let x;,
denote the term in (x,;) corresponding to z,,. Thus, foreachn = 1, if j > k,, we
must have x; equal y; or z; withi > n. Hence,

fi, = sup f(x;) < max [SUP S (i), sup f (z.-)], n>1.
J=kn i>n i>n

Now, both sequences on the right are decreasing inn > 1 to L, and the sequence
on the left decreases to f* asn / oco. Thus, f* < L. Now, let g = — f. Since
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g(c+) = g(c—) = —L, by what we have just leamed, we conclude that the upper
limit of (g(x,)) is < —L. But the upper limit of (g(x,)) equals minus the lower
limit f, of (f(x,)). Hence, fu, > L,so, f*= f,=L. O

Since continuous limits are defined in terms of limits of sequences, they enjoy
the same arithmetic and ordering properties. For example,

Iim [£(x) + g(x)] = lim f(x) + lim g(x),
Iim [f(x) - g(x)] = lim f(x) - lim g(x).

These properties will be used without comment.

A function f is increasing (decreasing)if x < x’implies f(x) < f(x")(f(x) >
f(x"), respectively), for all x, x’ in the domain of f. The function f is strictly
increasing (strictly decreasing) if x < x’ implies f(x) < f(x") (f(x) > f(x'),
respectively), for all x, x” in the domain of f. If f is increasing or decreasing, we
say f is monotone. If f is strictly increasing or strictly decreasing, we say f is
strictly monotone.

In the exercises, the concept of a partition (Figure 2.5) is needed. If (q, b) is
an open interval, a partition of (a, b) is a choice of n > 0 points (x1, x2, ..., X,)
in (a, b), arranged in increasing order. When choosing a partition, we write
a=xp<Xx <-- <X, < Xxp41 = b, always denoting the endpoints a and b by
xp and x,4), respectively (even when they are infinite). When n = 0, we obtain
the empty partition consisting of no points, i.e., just the interval (a, b). We use
the same notation for compact intervals, i.e., a partition of [a, b], by definition, is
a partition of (a, b).

a= X0 X X2 X3 X4 xs=b

FIGURE 2.5. A partition of (a, b).

Exercises 2.2

1. Define f : R — R by setting f(m/n) = 1/n, for m/n € Q with no common
factorinm and n > 0, and f(x) =0, x ¢ Q. Show that lim,_,. f(x) = O for all
ce€R.

2. Let f beincreasing on (a, b). Then, f(a+) (exists and) equals inf{ f(x) : @ <
x < b}, and f(b—) equals sup{f(x) :a < x < b}.

3. If f is monotone on (a, b), then, f(c+) and f(c—) exist, and f(c) is between
Sf(c—) and f(c+), forall ¢ € (a, b). Show also that, for each 8 > 0, there are, at
most, countably many points ¢ € (a, b) where | f(c+) — f(c—)| = 8. Conclude
that there are, at most, countably many points c in (a, b) at which f(c+) # f(c-).

4. If f : (a,b) — R let I, be the sup of the sums
2.1 |f(x2) = fO)] + 1 (x3) = FOl 4+ -+ 4+ 1 F () — F ()]
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over all partitionsa = xp < X} < X2 < --- < X, < Xp41 = b of (a, b) consisting
of n points, and let I = sup{l, : n > 2}. We say that f is of bounded variation
on (a, b) if I is finite. Show that bounded variation on (a, b) implies bounded
on (a, b). The sum in (2.1) is the variation of f corresponding to the partition
a<x <x3<--+-<x, <b, whereas I, the sup of all such sums over all

partitions consisting of arbitrarily many points, is the total variation of f over
(a, b).

S. If f isbounded increasing on aninterval (a, b), then, f is of bounded variation
on (a,b). If f = g — h with g, h bounded increasing on (a, b), then, f is of
bounded variation on (a, b).

6. Let f be of bounded variation on (a, b), and, fora < x < b, let v(x) denote the
sup of the sums (2.1) overall partitionsa = xp < X} < X2 < ++- < Xp < Xp41 =Db
withx, = x fixed. Showthata < x < y < bimplies v(x)+|f(y)—f(x)| < v(y),
hence, v : (a,b) > Randv— f : (a, b) = R are bounded increasing. Conclude
that f is of bounded variation iff f is the difference of two, bounded increasing
functions.

7. Show that the f in Exercise 1 is not of bounded variation on (0, 2) (remember
that }_1/n = o0).

§2.3 Continuous Functions

Let f be defined on (a, b), and choose @ < ¢ < b. We say that f is continuous
at c if

Lim f(x) = f ().

If f is continuous at every real c in (a, b), then, we say that f is continuous on
(a, b) or, if (a, b) is understood from the context, f is continuous.

Recalling the definition of lim,._,., we see that f is continuous at c iff, for all
sequences (x,) satisfying x, = candx, #c,n > 1, f(xn) = f(c). Infact, f
is continuous at c iff x, — c implies f(x,) — f(c), i.e., the condition x, # c,
n > 1, is superfluous. To see this, suppose that f is continuous at ¢, and suppose
that x, — c, but f(x,) 7 f(c). Since f(x,) # f(c), by Exercise 8 of §1.5,
there is an € > O and a subsequence (x]), such that | f(x;) — f(c)| = € and
x! — ¢, forn > 1. But, then, fxi) # f(c) foralln > 1, hence, x;, # ¢
for all n > 1. Since x/, — ¢, by the continuity at ¢, we obtain f(x,) — f(c),
contradicting | f (x.) — f(c)| = €. Thus, f is continuous at ¢ iff xn — ¢ implies
f(xz) = f(c).

In the previous section we saw that f(x) = x” is continuous at c¢. Since this
works for any ¢, f is continuous. Repeating this argument, one can show that
f(x) = x*is continuous, since x* = x%x2. A simpler example is to choose a real
k and to set f(x) = k for all x. Here, f(x») =k, and f(c) = k for all sequences
(x,) and all c, so, f is continuous. Another example is f : (0, c0) — R given by

2
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f(x) = 1/x. By the division property of sequences, x,, — ¢ implies 1/x, — 1/c
for ¢ > 0, so, f is continuous.

Functions can be continuous at various points and not continuous at other points.
For example, the function f in Exercise 1 of §2.2 is continuous at every irrational ¢
and not continuous at every rational c. On the other hand, the function f : R — R,
given by (§2.2),

1, xeQ

f(x)‘:{o, x ¢ Q,

is continuous at no point.

Continuous functions have very simple arithmetic and ordering properties. If
f and g are defined on (a, b) and k is real, we have functions f + g, kf, fg,
max(f, g), min(f, g) defined on (a, b) by setting, fora < x < b,

(f +8)x) = f(x) + gx),
(kf)(x) = kf (x),
(f8)(x) = f(x)g(x),
max(f, g)(x) = max[f(x), g(x)],
min(f, g)(x) = min[ f(x), g(x)].
If g is nonzero on (a, b), i.e., g(x) # 0 foralla < x < b, define f/g by setting

(f/g)(x)=@, a<x<b.
g(x)

Theorem. If f and g are continuous, then, so are f + g, kf, fg, max(f, g), and
min( f, g). Moreover, if g is nonzero, then, f[g is continuous.

This is an immediate consequence of the arithmetic and ordering properties
of sequences: Ifa < ¢ < b and x,, = ¢, then, f(x,) = f(c), and g(x,) —
g(c). Hence, f(xn) + g(xn) = f(c) + g(c), kf (x) — kf (c), f(x,)8(xn) —
f(€)g(c), max[f(xn), 8(x»)] — max[f(c), g(c)}, and min[f(x,), g(xs)] —
min[f(c), g()). If g(c) # O, then, f(x,)/g(xn) = f(c)/g(c). O

For example, we see immediately that f(x) = |x| is continuous on R since
|x| = max(x, —x).

Let us prove, by induction, that, for all k > 1, the monomials fi.(x) = x* are
continuous (on R). For k = 1, this is so since x, — ¢ implies f(x,) = x, —
¢ = fi(c). Assuming that this is true for k, fiy1 = fi fi since x**! = xkx.
Hence, the result follows from the arithmetic properties of continuous functions.

A polynomial f : R — R is a linear combination of monomials, i.e., a poly-
nomial has the form

fx) = aox" + alx"'l -+ azxa"2 +---tag_1x +ay.

If ag # O, we call d the degree of f. Thereals ag, ay, ..., ay, are the coefficients
of the polynomial.
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Let f be a polynomial of degree d > 0, and let a € R. Then, there is a
polynomial g of degree d — 1 satisfying!®

3.0 Fx) — f(a)
X —a

To see this, since every polynomial is a linear combination of monomials, it is
enough to check (3.1) on monomials. But, for f(x) = x",

x" — gt

= g(x), x # a.

(3.2) =x""4+x"2q+4..-+xa" 2 +a""!, x #a,

x—a
which can be checked!! by cross-multiplying. This establishes (3.1).

Since a monomial is continuous and a polynomial is a linear combination of
monomials, by induction on the degree, we obtain the following.

Theorem. Every polynomial f is continuous on R. Moreover, if d is its degree,
there are, at most, d real numbers x satisfying f(x) = 0.

A real x satisfying f(x) = 0 is called a zero or a root of f. Thus, every
polynomial f has, at most, d roots. To see this, proceed by induction on the
degree of f. If d = 1, f(x) = apx + ay, so, f has one root x = —a,/ap.
Now, suppose that every dth degree polynomial has, at most, d roots, and let f
be a polynomial of degree d + 1. We have to show that the number of roots
of f is at most d + 1. If f has no roots, we are done. Otherwise, let a be a
root, f(a) = 0. Then, by (3.1) there is a polynomial g of degree d such that
f(x) = (x —a)g(x). Thus, any root b # a of f must satisfy g(b) = 0. Since by
the inductive hypothesis, g has, at most, d roots, we see that f has, at most, d + 1
roots. [J

A polynomial may have no roots, e.g., f(x) = x2 + 1. However, every poly-
nomial of odd degree has at least one root (Exercise 1).

A rational function is a quotient f = p/q of two polynomials. The natural
domain of f isR\ Z(g), where Z(g) denotes the set of roots of g. Since Z(q) isa
finite set, the natural domain of f is a finite union of open intervals. We conclude
that every rational function is continuous where it is defined.

Let f : (a,b) — R. If f is not continuous at ¢ € (a, b), we say that f
is discontinuous at c. There are “mild” discontinuities, and there are “wild”
discontinuities. The mildest situation (Figure 2.4) is when the limits f(c+) and
f (c—) exist and are equal, but not equal to f(c). This can be easily remedied by
modifying the value of f(c) to equal f(c+) = f(c—). With this modification,
the resulting function, then, is continuous at ¢. Because of this, such a point ¢ is
called a removable discontinuity. For example, the function f in Exercise 1 of
§2.2 has removable discontinuities at every rational.

The next level of complexity is when f(c+) and f(c—) exist but may or may
not be equal. In this case, we say that f has a jump discontinuity (Figure 2.6) or

105 depends on a.
11(3.2) with x = 1 was used to sum the geometric series in §1.6.
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a mild discontinuity at c. For example, every monotone function has (at worst)
jump discontinuities. In fact, every function of bounded variation has (at worst)
jump discontinuities (Exercise 18). The (amount of) jump at c, a real number, is
f(c+) — f(c—). In particular, a jump discontinuity of jump zero is nothing more
than a removable discontinuity.

1

o lhianeas
— M ecacea
N Yeccsses
w s cccsaas
H Maececasvee

FIGURE 2.6. A jump of 1 at each integer.

Any discontinuity that is not a jump is called a wild discontinuity (Figure 2.7).
If f has a wild discontinuity at c, then, from above, f cannot be of bounded
variation on any open interval surrounding c¢. The converse of this statement is
false. It is possible for f to have mild discontinuities but not be of bounded
variation (Exercise 7 of §2.2).

FIGURE 2.7. A wild discontinuity.

An alternate and useful description of continuity is in terms of a modulus of
continuity. Let f : (a,b) = R, and fixa < ¢ < b. For 8 > 0, let

Be(8) = sup{|f(x) — f(O)l: Ix —¢c|] < 8,a < x < b}.

Since the sup, here, is possibly that of an unbounded set, we may have 1.(§) = oo.
The function p. : (0, 00) — [0, 00) U {co} is the modulus of continuity of f at c
(Figure 2.8).

For example, let f : (1,10) — R be given by f(x) = x2 and pick ¢ = 9.
Since x2 is monotone over any interval not containing zero, the maximum value
of |x? — 81| over any interval not containing zero is obtained by plugging in
the endpoints. Hence, u9(8) is obtained by plugging in x = 9 + &, leading to
to(8) = 8(8 + 18). In fact, this is correct only if 0 < § < 1. If 1 < § < 8, the
interval under consideration is (9—8, 9+38)N(1, 10) = (9—8, 10). Here, plugging
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in the endpoints leads to 149(8) = max(19, 185 —§2). If § > 8, then, (9—8, 9+4-98)
contains (1, 10) and, hence, p9(8) = 80. Summarizing, for f(x) = x2,c = 9,
and (a, b) = (1, 10),

8(5 + 18), 0<d6<1,
pe(8) = { max(19, 185 — §2), 1<6<8,
80, é = 8.
1 9-4§ 9 9+68 10

FIGURE 2.8. Computing the modulus of continuity.

Going back to the general definition, note that 1.(8) is an increasing function
of 4, and, hence, u.(0+) exists (Exercise 2 of §2.2).

Theorem. Let f : (a,b) — R, and choose ¢ € (a,b). The following are
equivalent:

(1) f is continuous at c.

(2) pc(0+)=0.

(3) For all € > O, there exists 8§ > 0, such that |x — c| < & implies | f (x) —
f()| <e.

That (1) implies (2) is left as Exercise 2. Now, assume (2), and suppose that
€ > 0is given. Since u.(0+) = 0, there exists a § > 0 with u.(8) < €. Then,
by definition of ., |Jx — c|] < & implies | f(x) — f(c)] < u(8) < €, which
establishes (3). Now, assume the €-§ criterion (3), and let x, — ¢. Then, for
all but a finite number of terms, |x, — ¢| < 8. Hence, for all but a finite number
of terms, f(c) —€ < f(xp) < f(c) +€. Lety, = f(xp), n = 1. By the
ordering properties of sup and inf, f(c) — € < yu.. < y; < f(c) + €. By the
ordering properties of sequences, f(c) —€ <y, < y* < f(c) +e€. Sincee > 0
is arbitrary, y* = y, = f(c). Thus, y, = f(xn,) = f(c). Since (x,) was any
sequence converging to ¢, lim,,¢ f(x) = f(c), ie.,(1). O

Thus, in practice, one needs to compute u.(8) only for § small enough, since
it is the behavior of u. near zero that counts. For example, to check continuity of
f(x) = x2 atc = 9, it is enough to note that 129(8) = (8 + 18) for small enough
8, which clearly approaches zero as § — 0+

To check the continuity of f(x) = x2 at ¢ = 9 using the €-3 criterion (3), given
€ > 0, it is enough to exhibit a § > 0 with uo(8) < €. Such a § is the lesser of
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€/20 and 1, 8 = min(e/20, 1). To see this, first, note that 5 (5 + 18) < 19 for this
8. Then, € < 19 implies §(5 + 18) < (¢/20)(1 + 18) = (19/20)¢ < €, whereas
€ > 19 implies 6(8 + 18) < €. Hence, in either case, p9(8) < €, establishing (3).

We never use the €-8 criterion (3) in this text. It is included here merely for
historical reasons. In practice, the definition (1) or the criterion (2) are more
efficient.

Now, we turn to the mapping properties of a continuous function. First, we
define one-sided continuity. Let f be defined on (a, b]. We say that f is continuous
at b from the left if f(b—) = f(b). In addition, if f is continuous on (a, b), we
say that f is continuous on (a, b]. Let f be defined on [a, b). We say that f is
continuous at a from the right if f(a+) = f(a). In addition, if f is continuous
on (a, b), we say that f is continuous on [a, b).

Note that a function f is continuous at a particular point c iff f is continuous
at ¢ from the right and continuous at ¢ from the left.

Let f be defined on [a, b]. We say that f is continuous on [a, b] if f is
continuous on [a, b) and (a, b]. Checking the definitions, we see f is continuous
on A if, for every ¢ € A and every sequence (x,) C A converging to ¢, f(x,) —
f(c), whether A is (a, b), (a, b], [a, b), or [a, b].

Theorem. Let f be continuous on a compact interval [a, b]. Then, f([a, b]) is
a compact interval [m, M].

Thus, a continuous function maps compact intervals to compact intervals. Of
course, f([a,b]) may not equal [f(a), f(b)]. For example, if f(x) = x2,
f(—2,2])) = [0,4] and [f(-2), f(2)] = {4}. We derive two consequences
of this theorem.

Let f([a, b]) = [m, M]. Then, we have two reals ¢ and d in [a, b], such that
f(c) = m and f(d) = M. In other words, M is a max, and m is a min for the
set f([a, b]). Thus, a continuous function on a compact interval admits a max
and a min. Of course, this is not generally true on noncompact intervals since
f(x) = 1/x has no max on (0, 1].

A second consequence is: Suppose that L is an intermediate value between f (a)
and f(b). Then, there mustbe ac,a < ¢ < b, satisfying f(c) = L. This follows
since f(a) and f(b) are tworealsin f([a, b]), and f([a, b]) is aninterval. Thus, a
continuous function on a compact interval attains every intermediate value. This
is the intermediate value property.

On the other hand, the two consequences, the existence of the max and the min
and the intermediate value property, combine to yield the theorem. To see this,
letm = f(c) and M = f(d) denote the max and the min, with ¢,d € [a, b). If
m = M, f is constant, hence, f([a,b]) = [m,M). fm < Mandm < L < M,
apply the intermediate value property to conclude that there is an x between ¢ and
d with f(x) = L. Hence, f([a, b]) = [m, M]. Thus, to derive the theorem, it is
enough to derive the two consequences.

For the first,let M = sup{f(x) :a < x < b}. f M < o0, foralln > 1, we
choose x,, € [a, b] satisfying f(x,) > M — 1/n. f M = oo, foralln > 1, we
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choose x, € [a, b] satisfying f(x,) > n. In either case, we obtain a sequence
(xn) with f(x;) — M. But (§2.1) (x,) subconverges to some ¢ € [a, b]. By
continuity, (f(x,)) subconverges to f(c). Since (f(x,)) also converges to M,
M = f(c), so, f has a max. Applying this to g = — f, we see that g has a max
which implies f has a min.

For the second, suppose that f(a) < f(b), and let L be an intermediate value,
f@ < L < f(b). We proceed as in the construction of 2 in 81.4. Let
S ={x €la,b]: f(x) < L}, and let c = sup S. S is nonempty since a € S,
and § is clearly bounded. For all n > 1, ¢ — 1/n is not an upper bound for S.
Hence, for eachn > 1, there is areal x,, € S with ¢ > x,, > ¢ — 1/n, which gives
X, —> c¢. By continuity, f(x,) = f(c). Since f(x,) < L foralln > 1, we obtain
f(c) < L. On the other hand, ¢ + 1/n is notin S, hence, f(c+1/n) > L. Since
c+1/n — ¢, we obtain f(c) > L. Thus, f(c) = L. The case f(a) > f(b) is
similar or is established by applying the previousto — f. 0O

From this theorem, it follows that a continuous function maps open intervals
to intervals. However, they need not be open. For example, with f(x) = x2,
F{(—2, 2)) = [0, 4). However, a function that is continuous and strictly monotone
maps open intervals to open intervals (Exercise 3).

The above theorem is the result of compactness mixed with continuity. This
mixture yields other surprises. Let f : (a,b) — R be given, and fix a subset
A C (a, b). Foré > 0, set

14(8) = sup{u.(d) : c € A}.

This is the uniform modulus of continuity of f on A. Since p..(8) is a decreasing
function of 4 for each c € A, it follows that 114 (8) is a decreasing function of §,
and hence, 14 (0+4) exists. We say f is uniformly continuouson A if p,(0+) = 0.
When A = (a, b) equals the whole domain of the function, we delete the subscript
A and write p(6) for the uniform modulus of continuity of f on its domain.

Whereas continuity is a property pertaining to the behavior of a function at (or
near) a given point ¢, uniform continuity is a property pertaining to the behavior
of f near a given set A. Moreover, since p.(6) < p4(8), uniform continuity on
A implies continuity at every point ¢ € A.

Inserting the definition of 1..(8) in 14 (8) yields

1a@ =sup{lf(x)— f(@)]:|x—c| <d,a<x<b,ceA},

where, now, the sup is over both x and c.

For example, for f(x) = x2, the uniform modulus 4 (8) over A = (1, 10)
equals the sup of |x2 — y?| overall 1 < x <y < 10 with y — x < §. But this is
largest when y = x + 8, hence, z4(8) is the sup of > +2x8 over 1 < x < 10—§
which yields p4(8) = 208 — 82. In fact, this is correct only if 0 < § < 9. For
8 = 9, the sup is already over all of (1, 10), hence, cannot get any bigger. Hence,
pa(8) = 99 for § > 9. Summarizing, for f(x) = x? and A = (1, 10),

205 — 82, 0<é=<9,

ra) = { 99, §>09.
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Since f is uniformly continuous on A if u4(0+) = 0, in practice one needs to
compute 14 (8) only for & small enough. For example, to check uniform continuity
of f(x) = x2 over A = (1, 10), it is enough to note that u4(8) = 205 — 82 for
small enough 8, which clearly approaches zero as § — 0+.

Now, let f : (a,b) — R be continuous, and fix A C (a, b). What additional
conditions on f are needed to guarantee uniform continuity on A? When A is a
finite set {c;, ..., cn},

pa@®) = max [pe, (), ..., tey()],

and, hence, f is necessarily uniformly continuous on A.

When A is an infinite set, this need not be so. For example, with f(x) = x?
and B = (0, 00), g (8) equals the sup of 1 (8) = 2¢é + 82 over 0 < ¢ < 00, or
ug(8) = oo, foreach é > 0. Hence, f is not uniformly continuous on B.

It turns out that continuity on a compact interval is sufficient for uniform con-
tinuity.

Theorem. If f : [a, b] — R is continuous, then, f is uniformly continuous on
(a, b).

To see this, suppose that L (0+) = (4.0)(0+) > 0,andsete = pn(0+)/2. Since
u is increasing, w(1/n) = 2¢, n > 1. Hence, for each n > 1, by the definition of
the sup in the definition of n(1/n), thereisac, € (a, b) with u., (1/n) > €. Now,
by the definition of the sup in ., (1/n), foreachn > 1, thereisan x, € (a, b) with
|Xp — cnl < 1/n and | f(x,) — f(cy)| > €. By compactness, (x,) subconverges to
somex € [a, b). Since |x,—c,| < 1/nforalln > 1, (c,) subconverges to the same
x. Hence, by continuity, (| f(x,) — f(cn)|) subconverges to | f(x) — f(x)| =0,
which contradicts the fact that this last sequence is bounded below by e > 0. O

The conclusion may be false if f is continuous on (a, b) but not on [a, b}
(see Exercise 23). One way to understand the difference between continuity and
uniform continuity is as follows.

Let f be a continuous function defined on an interval (a, b), and pick ¢ € (a, b).
Then, by definition of u, | f(x) — f(¢)] < u(8) whenever x lies in the interval
(c —8,c + ). Setting g(x) = f(c) forx € (c — 8,c + 8), we see that, for
any error tolerance €, by choosing 8 satisfying u.(8) < €, we obtain a constant
function g approximating f to within €, at least in the interval (¢ — 8, ¢ + 6).
Of course, in general, we do not expect to approximate f closely by one and the
same constant function over the whole interval (a, b). Instead, we use piecewise
constant functions.

We say g : (a,b) — R is piecewise constant if there is a partition a = x¢ <
X] < -+ < Xp < Xp41 = b, such that g restricted to (x;_;, x;) is constant for
i = 1,...,n+1(in this definition, the values of g at the points x; are not restricted
in any way). The mesh & of the partitiona = xy < x; < --- < Xn+1 = b, by
definition, is the largest length of the subintervals, § = max;<j<uq1 X — x;_y|.
Note that an interval has partitions of arbitrarily small mesh iff the interval is
bounded.
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Let f : [a,b] — R be continuous. Then, from above, f is uniformly con-
tinuous on (a,b). Given a partitiona = xp < X3 < -++ < Xp41 = b with
mesh &, choose x} in (x;—1, x;) arbitrarily, i = 1,...,n + 1. Then, by definition
of p, | f(x) — f(x}) < n(8) for x € (xi-y, x;). If we set g(x) = fF(x¥) for
x€Xi—,x),i=1,...,n+1,and g(x;) = f(x;),i =0,1,...,n+1, we ob-
tain a piecewise constant function g : [a, b] — R satisfying | f (x) —g(x)| < (8)
for every x € [a, b]. Since f is uniformly continuous, 1(0+) = 0. Hence, for
any error tolerance € > 0, we can find a mesh &, such that £(§) < €. We have
derived the following (Figure 2.9).

Theorem. If f : [a,b] — R is continuous, then, for each € > 0, there is a
piecewise constant function f, : [a, b] — R, such that

| f(x) — fe)] <€, a<x<b 0O

a=x9 X1 X2 X3 xa=b

FIGURE 2.9. Piecewise constant approximation.

If f is continuous on an open interval, this result may be false. For example
f(x) = 1/x, 0 < x < 1, cannot be approximated as above by a piecewise
constant function (unless infinitely many subintervals are used), precisely because
f “shoots up to co” near 0.

Let us turn to the continuity of compositions (§1.1). Suppose that f : (a, b) —
R and g : (c,d) — R are given with the range of f lying in the domain of
g, fl(a, b)] C (c,d). Then, the composition g o f : (a,b) — R is given by
(go f)(x) =glf(x)].a <x <b.

Theorem. If f and g are continuous, sois g o f.

Since f is continuous, x, — ¢ implies f(x,) = f(c). Since g is continuous,

(g o Hxn) =glf )] = glf )= (go f)c). O
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This result can be written
limg[f(x)] =g |lim f (x)] .
X=>C ->C
Since g(x) = |x| is continuous, this implies
lim | £(x)] = |1im f(x)I .
X=>C X=>C

The final issue is the invertibility of continuous functions. Let f : [a, b] —
[m, M] be a continuous function. When is there an inverse (§1.1) g : [m, M] —
[a,b)? If it exists, is the inverse g necessarily continuous? It turns out that
the answers to these questions are related to the monotonicity properties (§2.2)
of the continuous function. For example, if f is continuous and increasing on
[a,b]and A C [a, b], sup f(A) = f(sup A), and inf f(A) = f(inf A) (Exercise
4). It follows that the upper and lower limits of (f(x,)) are f(x*) and f(x,),
respectively, where x*, x, are the upper and lower limits of (x,) (Exercise 5).

Inverse Function Theorem. Let f : [a,b] — R be continuous. Then, f is
injective iff f is strictly monotone. In this case, let [m, M] = f([a, bl). Then,
the inverse g : [m, M] — [a, b} is continuous and strictly monotone.

If f is strictly monotone and x # x’, then, x < x’ or x > x’ which implies
f(x) < f(x")or f(x) > f(x"), hence, f is injective.

Conversely, suppose that f is injective and f(a) < f(b). We claim that f is
strictly increasing (Figure 2.10). To see this, suppose not and choose a < x <
x' < b with f(x) > f(x'). There are two possibilities: Either f(a) < f(x) or
f(a) = f(x). In the first case, we can choose L in (f(a), f(x)) N (f(x"), f(x)).
By the intermediate value property there are ¢,d witha < ¢ < x < d < x’ with
f(e) = L = f(d). Since f is injective, this cannot happen, ruling out the first
case. Inthe second case we musthave f(x’) < f(b), hence,x’ < b, so, we choose
Lin (f(x), f(x)) N(f(x"), f(b)). By the intermediate value property, there are
c,dwithx < ¢ < x’' <d < bwith f(c) = L = f(d). Since f is injective,
this cannot happen, ruling out the second case. Thus, f is strictly increasing. If
f(a) > f(b), applying what we just learned to — f yields — f strictly increasing
or f strictly decreasing. Thus, in either case, f is strictly monotone.

a c X d x’ b

FIGURE 2.10. Derivation of the IFT when f(a) < f(b).
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Clearly strict monotonicity of f implies that of g. Now, assume that f is
strictly increasing, the case with f strictly decreasing being entirely similar. We
have to show that g is continuous. Suppose that (y,) C [m, M] with y, — y. Let
x = g(y), let x, = g(yz), n = 1, and let x* and x, denote the upper and lower
limits of (x,). We have to show g(y,) = x,, = x = g(y). Since f is continuous
and increasing, f(x*) and f(x,) are the upper and lower limits of y, = f(x).
Hence, f(x*) = y = f(x,). Hence, by injectivity, x* =x =x,. O

As an application, note that f(x) = x? is strictly increasing on [0, n], hence,
has an inverse g, (x) = /x on [0, n?], for each n > 1. By uniqueness of inverses
(Exercise 4 of §1.1), the functions g,, n > 1, agree wherever their domains
overlap, hence, yield a single, continuous, strictly monotone g : [0, co) — [0, 00)
satisfying g(x) = ./x, x > 0. Similarly, for each n > 1, f(x) = x" is strictly
increasing on [0, 00). Thus, every positive real x has a unique positive nth root
x'/", and, moreover, the function g(x) = x!/" is continuous on [0, 00). By
composition, it follows that f(x) = x™/" = (x™)!/" is continuous and strictly
monotone on [0, oo) for all naturals m, n. Since x™@ = 1/x? for a € Q, we see
that the power functions f (x) = x" are defined, strictly increasing, and continuous
on (0, oo) for all rationals r. Moreover, x™*s = x"x*, (x")* = x"* forr, s rational,
and, forr > Orational,x” — Oasx — Oandx” — oo asx — 00. The following
limit is important: For x > 0,

(3.3) lim x'/" = 1.
nj/'oo

To derive this, assume x > 1. Then, x < xx!/" = x"+D/n_go x1/+D) < xl/n,
so, the sequence (x!/") is decreasing and bounded below by 1, hence, its limit
L > 1exists. Since L < x¥/2" L2 < x%/2" = x'/" hence, L2 <LorL <1. We
conclude that L = 1. If0 < x < 1, then, 1/x > 1, s0, x'/* = 1/(1/x)!/* - 1
asn /' o0.

Any function that can be obtained from polynomials or rational functions by
arithmetic operations and/or the taking of roots is called a (constructible) algebraic
function. For example,

1
f(x)=———-,__—x(l_x).

is an algebraic function.
We now know what a® means for any a > 0 and b € Q. But what if b ¢ Q?
What does 2v2 mean? To answer this, fixa > 1 and » > 0, and let

O<x<l,

c=sup{a”" :0<r <b,r € Q}.

Let us check that when b is rational, ¢ = a”. Sincer < simpliesa” < a*,a" < a®
when r < b. Hence, ¢ < a®. Similarly, ¢ > a?~'/" = ab/a'/" foralln > 1. Let
n 7 oo and use (3.3) to get ¢ > a®. Hence, ¢ = a® when b is rational. Thus, it is
consistent to define, for any a > 1 and real b > 0,

a’ =supla” :0<r <b,reqQ},
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a® = 1,anda~? = 1/a®. Forall b real, we define 12 = 1, whereas forO0<a<1,
we define a® = 1/(1/a)®. This defines a? > 0 for all positive real a and all real
b. Moreover (Exercise 7),

a’ =inf{a® : s > b,s € Q}.

Now, we show that a? satisfies the usual rules.

Theorem.

e Fora>1and0 <b <creal,1 < a® < a.

e ForO<a < 1and0 < b < creal, a® > a°.

e For0 < a < bandc > 0 real, ab = (ab), (b/a)* = b‘/a‘, and
a® < be.

e Fora>0andb,creal,a®* =a

e Fora >0, b, c real, a* = (ab)c.

bgc,

Since A C B implies supA < sup B, a® < a® whena > 1 and b < c. Since,
forany b < ¢, thereisan r € QN (b,c), a® < a°, thus, the first assertion.
Since, for 0 < a < 1, a® = 1/(1/a)?, applying the first assertion to 1/a yields
(1/a)® < (1/a) ora® > a¢, yielding the second assertion. For the third, assume
a>1.X0<r <cisinQ, then, a” < a® and b" < b yields (ab)" = a'b" <
a®bf. Taking the sup over r < c yields (ab)¢ < ab°. If r < cands < care
positive rationals, let ¢ denote their max. Then, a"b* < a'b’ = (ab)" < (ab)“.
Taking the sup of this last inequality over all 0 < r < c, first, then, over all
0 < s < cyields a’b® < (ab)‘. Hence (ab)° = a‘b° forb > a > 1. Using
this, we obtain (b/a)°a® = b or (b/a)* = b/a. Since b/a > 1 implies
(b/a)* > 1, we also obtain a® < b°. Thecasesa < b < landa <1 < b
follow from the case b > a > 1. This establishes the third. For the fourth, the
case 0 < a < 1 follows from the case a > 1, so, assumea > 1, b > 0, and
c > 0. Ifr < bands < c are positive rationals, then, a®*° > a"** = a'a’.
Taking the sups over r and s yields a®*¢ > a®a®. If r < b + c is rational, let
d=({b+c—r)/3 > 0. Pickrationalsz ands withb > ¢t > b—d,c > s > c—d.
Then, t +s >b+c—2d > r,s0,a" < a'* = a'a* < a’a. Taking the sup
over all such r, we obtain a®*+¢ < a®a. This establishes the fourth when b and ¢
are positive. The cases b < 0 or ¢ < 0 follow from the positive case. The fifth
involves approximating b and c by rationals, and we leave it to the reader. O

As an application, we define the power function with an irrational exponent.
This is a nonalgebraic or transcendental function. The transcendental functions
in this book are the power function x* (when a is irrational), the exponential
function a*, the logarithm log, x, the trigonometric functions and their inverses,
and the gamma function. The trigonometric functions are discussed in §3.5, the

gamma function in §5.1, whereas the power, exponential, and logarithm functions
are discussed below.
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Theorem. Let a be real, and let f(x) = x° on (0, 00). Fora > 0, f is strictly
increasing and continuous with f(0+) = 0 and f(0c0) = oo. Fora < 0, f is
strictly decreasing and continuous with f(0+) = oo and f(oco0) = 0.

Since x™® = 1/x9, the second part follows from the first, so, assume a > 0.
Let r, s be positive rationals withr < @ < s, and let x, — ¢. We have to show
that x; — ¢“. Butthe sequence (x?) lies between (x;,) and (x;). Since we already
know that the rational power function is continuous, we conclude that the upper
and lower limits L*, L,, of (x7) satisfy ¢" < L, < L* < ¢*. Taking the sup over
all r rational and the inf over all s rational, withr < a < s, gives L* = L, = c°.
Thus, f is continuous. Also, since x” — oo as x — oo and x” < x? forr < a,
f(o0) = 00. Since x* < x* fors >aand x* - 0asx — 0+, f(0+)=0. O

Now we vary b and fix a in a®.

Theorem. Fixa > 1. Then, the function f (x) = a*, x € R, is strictly increasing
and continuous. Moreover,

(3.9 f&x+x) = f(x) fx),
f(—00) =0, f(0) =1, and f(o0) = o0.

From the previous section, we know that f is strictly increasing. Sincea” oo
asn /! o0, f(c0) = 0. Since f(—x) = 1/f(x), f(—oo) = 0. Continuity
remains to be shown. If x,, \ ¢, then, (a*) is decreasing and a* > a¢, so, its
limit L is > a. On the other hand, for d > 0, the sequence is eventually below
a‘*? = aa“, hence, L < aa?. Choosing d = 1/n, we obtain a® < L < aal/".
Letn /' ooto get L = a°. Thus, a™ | a°. If x, = c+ is not necessarily
decreasing, then, x} “\ c, hence, a*» — a°. But x* > x, for all n > 1, hence,
a* > a* > a®, so, a* —> a. Similarly, from the left. O

The function f(x) = a* is the exponential function with base a > 1. In fact,
the exponential is the unique continuous function f on R satisfying the functional
equation (3.4) and f(1) = a.

By the inverse function theorem, f has an inverse g on any compact interval,
hence, on R. We call g the logarithm with base a > 1, and write g(x) = log, x.
By definition of inverse, a'%%* = x, for x > 0, and log,(a*) = x, forx € R.

Theorem. The inverse of the exponential f(x) = a* with base a > 1 is the
logarithm with base a > 1, g(x) = log, x. The logarithm is continuous and
strictly increasing on (0,00). The domain of log, is (0, 00), the range is R,
log,(0+) = —o0, log, 1 = 0, log, 00 = 00, and

log,(bc) =log, b + log, c,

Jog (b°) = clog, b,

forb>0,c>0.
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This follows immediately from the properties of the exponential function with
basea>1. O

Exercises 2.3

1. If f is a polynomial of odd degree, then, f(do0) = 00 or f(+o0) = Foo,
and there is at least one real ¢ with f(c) = 0.

2. Show that f is continuous at c iff u.(0+) = 0.

3. If f : (a, b) — R is continuous, then, f((a, b)) is an interval. In addition, if
f is strictly monotone, f((a, b)) is an open interval.

4, If f is continuous and increasing on [a, b] and A C [a, b], then, sup f(A) =
f(sup A), and inf f(A) = f(inf A).

5. With f asinExercise 4, let x* and x, be the upper and lower limits of a sequence
(x.). Then, f(x*) and f(x,) are the upper and lower limits of (f(x.))-

6. Withr,s € Q and x > 0, show that (x")* = x™ and x"** = x"x°.
7. Show thata® = inf{a’® : s > b, s € Q}.
8. With b and c real and a > 0, show that (a®)¢ = a®*.

9. Fixa > 0. If f : R — Riscontinuous, f(1) = a,and f(x+x’) = f(x) f(x")
for x, x’ € R, then, f(x) = a*.

10. Use the €-6 criterion to show that f(x) = 1/x is continuous at x = 1.
11. % Areal x is algebraic if x is a root of a polynomial of degree d > 1,
apx? +ayx® '+ -+ ag_y1x +ay =0,

with rational coefficients ay, ay, . ..,aq. A real is transcendental if it is not al-
gebraic. For example, every rational is algebraic. Show that the set of algebraic
numbers is countable (§1.7). Conclude that the set of transcendental numbers is
uncountable.

12. % Let a be an algebraic number. If f(a) = 0 for some polynomial f with
rational coefficients, but g(a) # 0 for any polynomial g with rational coefficients
of lesser degree, then, f is a minimal polynomial for a, and the degree of f is the
algebraic order of a. Now, suppose that a is algebraic of order d > 2. Show that
all the roots of a minimal polynomial f are irrational.

13. % Suppose that the algebraic order of @ is d > 2. Then, there isac > 0,
such that

I m c

(See Exercise 10 of §1.4. Here, you will need the modulus of continuity u, at a
of g(x) = f(x)/(x — a), where f is a minimal polynomial of a.)
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14. % Use the previous exercise to show that

1100010...010 —1+1+1+ —il
. 10 ' 102 ' 106 T L 0M

n=1

is transcendental.
15. Fors > 1real, } ;2 n™* converges.

16. Ifa > 1,b > 0, and ¢ > O, then, b8 ¢ = (& ¢ and
o0
1

Z §logyn

n=]

converges.

17. Give anexampleof an f : [0, 1] — [0, 1] that is invertible but not monotone.

18. Let f be of bounded variation (Exercise 6 of §2.2) on (a, b). Then, the set
of points at which f is not continuous is at most countable. Moreover, every
discontinuity, at worst, is a jump.

19. If f : R — R s continuous and f(o0o0) = f(—o0) = —oo, then, max{f(x) :
x € R} exists.

20. % If f : R — R satisfies
f(x)

lim — =400
x—too |x| #eo;

we say that f is superlinear. If f is superlinear and continuous, then
gy)=_max [xy—f(x)l, yeR,
—00<X <00

is well defined (the max exists), and g is superlinear. (For y fixed, take a sequence
(xn), such that x,,y — f(x,) / sup{xy — f(x) : x € R}, and use superlinearity
to show that (x,) is bounded, hence, subconverges to some x attaining the sup.)

21. % If f : R — R is superlinear and continuous, then, g is also continuous.
(Modify the logic of the previous solution.)

22. Let f(x) = 14 [x] — x, x € R, where [x] denotes the greatest integer < x
(Figure 2.6). Compute
lim ( Iim [f (n!x)]'")

/o0

n/'c0 \m

for x € Q and for x ¢ Q.

23. Let f(x) = 1/x,0 < x < 1. Compute u(8) explicitly for0 < ¢ < 1 and
8 > 0. Show that u(8) = oo for all § > 0. Conclude that f is not uniformly
continuous on (0, 1). (There are two cases, ¢ < § and ¢ > 4.)
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24. Let f : R — R be continuous, and suppose that f(oo) and f(—oo) existand
are finite. Show that f is uniformly continuous on R.

25. % Use ﬁﬁ to show that there are irrationals a, b, such that a® is rational.



Differentiation

§3.1 Derivatives

Let f be defined on (a, b), and choose ¢ € (a, b). We say that f is differentiable
at c if

lim Fx)— f(c)

X=>C X —C

exists as a real, i.e., exists and is not toco. If it exists, we denote this limit f'(c)

d
or d—f(c), and we say that f’(c) is the derivative of f at c. If f is differentiable

atc %Cor alla < ¢ < b, we say that f is differentiable on (a, b) or, if it is clear
from the context, differentiable. In this case, the derivative f’ : (a,b) = Risa
function defined on all of (a, b).

For example, the function f(x) = mx + b is differentiable on R with derivative
f'(¢) = m for all ¢ since
i (mx + b) — (mc + b)

li = limm =m.
X=>C X —C X=>C

Since its graph is a line, the derivative of f(x) = mx <+ b (at any real) is the slope
of its graph. In particular, the derivative of a constant function f(x) = b for all x
is zero.
If f(x) = x2, then, f is differentiable with derivative
x2 —¢? (x —c)(x +¢)

/ . g
¢) = lim = lim
f( ) X—>»C x—C X—»C x—c

= lim(x +¢) = 2c.
X=>C
If f is differentiable at c, then,

tm ) = tim |
(f(x) — f(©o)

Jx) - f(C)) o —0) +f(c)]
X—C

= lim

X=>C X—C

)}i_)rrg(x —c)+ f(c)
= f'(c)-0+ f(c) = f(o).

So, f is continuous at c. Hence, a differentiable function is continuous.
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However, f(x) = |x| is continuous at 0 but not differentiable there since
lx| —10]

. 1,
x]—lrr(?+ x-0
whereas
. x| —10]
= —1.
x]—l)r(r)l— x—0
However,
x
(le)’ =T X # 0,
|x|
since |x| = x, hence, (|x])’ = 1 on (0, 00), and |x| = —x, hence, (|x])’ = —1 on
(—00,0).

Derivatives are computed using their arithmetic properties.

Theorem. If f and g are differentiable on (a, b), and k is real, so are f + g, kf,
fg,and, fora <x < b,
(f+8) () = f'(x)+g(x),
kfY (x) = kf'(x), a<x<b.
(f8) x) = f'(x)g(x) + f(x)g' (x),
Moreover, if g is nonzero on (a, b), then, f/g is differentiable and

Y .\ Fx)gx)— f(x)g'(x)
g g(x)

a<x<b»s.

The first two identities together are called the linearity of the derivative, the

third is the product rule, whereas the last is the guotient rule. To derive these
rules, leta < ¢ < b. For sums,

(f + 2)(@) = lim LX) TEEN = (F©) +())

X —C
lim I @ o 80) —2()
X=>C X —C X=>C xX—c
= f'(c) + g'(c).

For scalar multiplication,

(kY (@) = lim kf (x; ~ kf (c)

—C

il SR = £

X=>C X —C

= kf' ().
For products,

JF(x)g(x) — f(c)g(c)

X—=C

(f8)'(©) = lim
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_ gy @8 — f)gx) + f()g(x) — f(c)g(e)

X—>C X—C

— gj L)~ f©) lim g(x) + £(c) lim g(x) — g(c)
X=>C X —C X=>C X=>C xX—C
= f'(c)g(c) + f(c)g' (o).
For quotients,
(i ) (©) = lim L &V/8X) — f(©)/g(c)
g X—c X—-c

— lim f(x)g(c) — f(c)glx)
x—¢  (x —c)g(x)g(c)

fx) - f (C)g © — f(c)g(x) —8(c)
- hm X —C X —C
x—>¢ g(x)g(c)
R f©gl) - f (c)g'(C).

a

g(c)?

Above, we saw that the derivative of f(x) = x is f'(x) = 1. By induction, we
show that the derivative of the monomial f(x) = x" is nx"~!. Since this is true
for n = 1, assume it is true for n > 1. Then, by the product rule if f(x) = xnH

flix) = (x""")' = (x"x)' = (x")'x +x"(x) = nx""x +x"(1) = (n + Dx".

This establishes that (x")’ = nx"~! for all n > 1. Since polynomials are linear
combinations of monomials, they are differentiable everywhere. For example,

O3 +5x + 1) = (3 + Gx) + 1) =3x2 +5.
Moreover,
(1.1) (x") =nx", neZ,x+#0.
This is clear for n = 0 whereas, for n > 1, using the quotient rule, we find that
—n\! 1Y @x"—1(x")
(x ) =\) = 2
(x™)

n n—1
0-x" —nx n__ =1

This establishes (1.1). Another consequence of the quotient rule is that a rational
function is differentiable wherever it is defined. For example,

-1 @)+ -*-DRx) &
x2+1) (x2 + 1) G2+ 1%
We say that a function g is tangent to f at c if the difference f(x) — g(x)
vanishes faster than first order in x — ¢, i.e., if
g £ —80) _
m =

X—=>C xXxX—c

0.
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Suppose that g(x) = mx + b is tangent to f at c. Since the graph of g is a line,
it is reasonable to call it the line tangent to f at (c, f(c)) or, more simply, the
tangent line at c. Note two lines are tangent to each other iff they coincide. Thus,
a function f can have, at most, one tangent line at a given real c.

(x, f(x))

} Fliexx —¢)

(c, f(c)

FIGURE 3.1. The derivative is the slope of the tangent line.

If f is differentiable at c, then, g(x) = f "(c)(x — ¢) + f(c) is tangent to f at
¢, since

lim fx)—g(x) _ Hm fx)—f@©) - fc)x—o0)

X=>C X—C X—=>C X—C
—im IV =IO vy -0
X—=C X—C

Hence, the derivative f'(c) of f at c is the slope of the tangent line at c (Figure
3.1).

If f is differentiable at c, there is a positive k and some interval (c —d, ¢ +d)
about ¢ on which

(1.2) If(x)— f@)l <klx —cl, c—d<x<c+d.

Indeed, if this were not so, foreachn > 1, we would findareal x, € (c—1/n,c+
1/n) contradicting this claim, i.e., satisfying

f(xn) — f(c)
Xp —C

But, then, x, —> ¢, and, hence, this inequality would contradict differentiability
at c.

The following describes the behavior of derivatives under composition.

>n

Theorem (Chain Rule). Let f, g be differentiable on (a, b), (c, d), respectively.
If f((a, b)) C (c,d), then, g o f is differentiable on (a, b) with

go fY(x)=g'(f(x)) f'(x), a<x<b.

To see this, let a < ¢ < b, and assume, first, f’(c¢) # 0. Then, x, — ¢ and
xp # c forall n > 1 implies f(x,) = f(c) and (f(x,) — f())/(xn — C) —
f'(©) # 0. Hence, there is an N > 1, such that f(x,) — f(c) # 0 forn > N.
Thus,

iy 8 0n)) —8(f(€) _ . 8(f(xn)) — g(f(c)) f(xn)— f(c)
n/'oo Xnp —C n /o0 f(xn) - f(c) Xp—C
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g 8(f(xn)) —g(f(c)) ,. f(xn)— f(c)
= F) —F©@ rom  m—c
=g (f( ) f' (o).

Since x, — ¢ and x,, # ¢ for all n > 1, by definition of lim,_, . (§2.2),

(go (@) = lim ELED =T _ o5y i)

This establishes the result when f’(c) # 0. If f/(c) = 0, by (1.2) there is a k with
l8(y) — g(f ()] < kly — f(c)l

for y near f(c). Since x — ¢ implies f(x) — f(c), in this case, we obtain
(g 0 £Y()| = lim g(f (x)i - f(f ()
< lim kI f(x) — f(o)l
e x—c|

=klf'(c)| = 0.

Hence, (go fY(€) =0=¢g'(f(e))f'(c). DO
For example,

(=Y == (=5" () =~ (="

follows by choosing g(x) =x"and f(x) =1—x/n,0 < x <n.
If wesetu = f(x)and y = g(u) = g(f(x)), then, the chain rule takes the
easily remembered form

We say that f : (a,b) — R has a local maximum at ¢ € (a, b) if, for some
>0, f(x) < f(c)on(c—8, c+48). Similarly, we say that f has alocal minimum
atc € (a, b) if, for some 6 > 0, f(x) = f(c) on (c — 3§, c + 8). Altemnatively,
we say that c is a local max or a local min of f. If, instead, these inequalities
hold for all x in (a, b), then, we say that ¢ is a (global) maximum or a (global)
minimum of f on (a, b). Itis possible for a function to have a local maximum at
every rational (see Exercise 9).

A critical point of a differentiable f is areal ¢ with f'(c) = 0. A critical value
of f is areal d, such thatd = f(c) for some critical point c.

Let f defined on (a, b). Suppose that f has a local minimum at ¢, and is
differentiable there. Then, for x > c near ¢, f(x) > f(c), so,

= tim TR =IO

x>+ x—¢

For x < cnearc, f(x) = f(c), so,

f(c) = lim fFx)— f(c) <0.

x>e- X —C
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Hence, f'(c) = 0. Applying this result to g = — f, we see that if f has a local
maximum at c, then, f’(c) = 0. We conclude that a local maximum or a local
minimum is a critical point. The converse is not, generally, true since ¢ = Oisa
critical point of f(x) = x3 but is neither a local maximum nor a local minimum.

Using critical points, one can maximize and minimize functions over their
domains. For example, to compute

min f(x)

a<x<b

when f is differentiable, it is enough to compute the critical values of f and
compare them with f(a+) and f(b—), assuming these limits exist. If the least of
these values is f(c) for some critical point ¢ € (a, b), then, f is minimized at c.
If the least of these values is f(b—) or f(a-+), then, f has an inf but no minimum
over (a, b). Similarly, for computing max. For example,
max (6x —x*) =9
—00<X <00

since the only critical point of f(x) = 6x—x2isatx = 3and f(c0) = f(—00) =
—00.

Mean Value Theorem. If f is continuous on [a, b] and differentiable on (a, b),
then, there is a c in (a, b) with

f(b)—f(a).

fle)y=——

To see this (Figure 3.2), first we subtract a line from f by setting
b) —
2(x) = F(x) — {[f( ) — f(a)

b—a

Then, g is continuous on [a, b], differentiable on (a, b), and g(a) = g(b) = 0. If
g(x) = Oeverywhereon [a, b],leta < ¢ < bbeanyreal. If g(x) > 0 somewhere
in (a, b), let ¢ be areal at which g is maximized. If g(x) < 0 somewhere in (a, b),
let ¢ be a real at which g is minimized. In all three cases, we obtain g’(c) = 0.
Since

](x—a)+f(a)], a<x<hb.

g'(c) = fl(c) _ f(b) e f(a) ,

b—a

we aredone. OO

FIGURE 3.2. The mean value theorem.
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For example, choose f(x) = (1 —x/n)",a = 0, b > 0. Then, f'(x) =
—(@1 — x/n)"! is between —1 and 0 when 0 < x < n. By the mean value
theorem, we conclude that

< 1—(1-=b/n)" N
=< 5 <
since the ratio equals the negative of (f(b) — £(0))/(b — 0). The point of this
inequality is that, when b > 0 is small, the numerator is small enough to compen-
sate for the smallness of the denominator, yielding a quotient bounded between 0
and 1.

As a consequence of the mean value theorem, if f and g are differentiable on
(a,b) and f'(x) = g'(x) for all x, then, f and g differ by a constant, f(x) =
g(x)+C. To see this, note that h(x) = f(x) — g(x) satisfies h'(x) = 0, so, by the
mean value theorem (h(c) — h(d))/(c — d) equals k' at some intermediate real.
Hence, h(c) = h(d), hence, h is a constant function.

Let (—b, b) be an interval symmetric about 0. Given a function f : (—b, b) —
R, its even part f° is the function

0

1, O<b<nn=>1,

fe(x) - f(x) +2f(_x) ]
and its odd part f° is
fO(x) — f(x) —Zf(_x).

Clearly, f = f¢ + f°.

A function f is even over (—b, b) if f = f* on (—b, b) and odd over (—b, b) if
f = f° on (—b, b). Thus, an even function satisfies f(—x) = f(x) on (—b, b),
whereas an odd function satisfies f(—x) = — f(x) on (—b, b). For example, x"
is even or odd on R according to whether # is even or odd.

Exercises 3.1
1. Leta > 0 and define f(x) = |x|®. Show that f is differentiable at 0 iffa > 1.

2. Define f : R — R by setting f(x) = 0, when x is irrational, and setting
f(@m/n) = 1/n® when n > 0 and m have no common factor. Use Exercise 10 of
§1.4 to show that f is differentiable at V2. What is f'(v/2)?

3. Let f(x) = ax?/2 witha > 0, and set
(1.3) gO)=_max (xy—f(), y€R.

By direct computation, show that g(y) = y*/2a and f' and g’ are inverses.

4. % If g : R — Ris superlinear (Exercise 20 of §2.3) and differentiable, then,
g'(R) is unbounded above and below, sup g'(R) = oo and inf g'(R) = —o0.
(Argue by contradiction, and use the mean value theorem.)
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5. Suppose that f is continuous on (a, b), differentiable on (a, b) punctured at c,
a < ¢ < b, and lim,_,. f'(x) = L exists. Show that f’(c) exists and equals L.

6. Suppose that f : (a,b) — R is differentiable, a < ¢ < b, and f’(c+) and
f'(c—) exist. Show that f’(c+) = f'(c) = f'(c—). (As opposed to the previous
exercise, here, we assume that f’(c) exists.)

7. Suppose that f is differentiable on a bounded interval (a, b) with | f’| < I.
Show that f is of bounded variation (Exercise 4 of §2.2) over (a, b) with total
variation < I(b — a).

8. Show that the function f : R — R in Exercise 1 of §2.2 has a local maximum
atevery c € Q.

9. Suppose that f : (—b, b) — R is differentiable. Then, f’ is even or odd if
f is odd or even, respectively. % Moreover, if f : (—00, 00) — R is even and
superlinear (Exercise 20 of §2.3), then, the function g, given by (1.3) above, is
even.

§3.2 Mapping Properties

To differentiate roots, we need to know how derivatives of inverses behave. But
continuous functions are invertible iff they are strictly monotone (§2.3), so, we
begin by using the derivative to identify monotonicity.

Theorem. Let f : (a,b) — R be differentiable. If f'(x) # 0 fora < x < b,
then, f is strictly monotone on (a, b) and f'(x) > 0 on (a, b) or f'(x) < Oon
(a, b). Moreover, f'(x) > 0 on (a, b) iff f is increasing, and f'(x) < 0 on (a, b)
iff f is decreasing.

By the mean value theorem, givena < x < y < b, there is a ¢ in (x, y)
satisfying

fO) = f@x) = f'e)y — x).

If f' is never zero, this shows that f is injective, hence, strictly monotone by the
inverse function theorem (§2.3). This also shows that f/ > 0 on (a, b) implies
f is increasing and f’ < 0 on (a, b) implies f is decreasing. Conversely, f
increasing implies f(x) > f(c) for x > ¢, so,

fl(c) = F&x) = f(c) >0
x=c+ X —¢
foralla < ¢ < b. Similarly, if f is decreasing. In particular, we conclude that if
Jf' is never zero and f is monotone, we must have f’ > 0 on (a, b) or f’ < 0 on
(a,b). O
It is not, generally, true that strict monotonicity implies the nonvanishing of f’.
For example, f(x) = x? is strictly increasing on R but £/(0) = 0.
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Since its derivative was computed in the previous section, the function

x2 -1
f(x)=x2+1

is strictly increasing on (0, co) and strictly decreasing on (—o0, 0). Thus, the
critical point x = 0 is a minimum of f on R.

A useful consequence of this theorem is the following: If f and g are differen-
tiable on (a, b), continuous on [a, b}, f(a) = g(a), and f'(x) > g’(x) on (a, b),
then, f(x) = g(x) on [a, b]. This follows by applying the theoremtoh = f —g.

Another consequence is that derivatives, although not necessarily continuous,
satisfy the intermediate value property (Exercise 8).

Now we can state the inverse function theorem for differentiable functions.

Inverse Function Theorem. Let f be continuous on {a, b), differentiable on
(a, b), and suppose that f'(x) # 0 on (a, b). Let [m, M] = f(la, b]). Then,
f : [a,b] — [m, M] is invertible and its inverse g is continuous on [m, M],
differentiable on (m, M), and g'(y) # 0 on (m, M). Moreover,

1

')’

go) = m<y<M.

Note, first, that f’ > 0 on (a, b) or f’ < 0 on (a, b) by the previous theorem.
Suppose that f* > 0 on (a, b), the case f' < 0 being entirely similar. Then,
f is strictly increasing, hence, the range [m, M] must equal [f(a), f(b)], f is
invertible, and its inverse g is strictly increasing and continuous. Ifa < ¢ < b
and y, = f(c), yn # f(c) forall n = 1, then, x, = g(y,) = g(f(c)) = c and
x, #cforalln > 1,s0,y, = f(x;),n =1, and

Hm 8Un) —g(f) . *n—C 1

e Y- f©  nrwfE)—f©)  F©

Since (y,) is any sequence converging to f(c), this implies

/ . 8 —g(f@)) _ 1
g(fey= lm, y—Ff@) = fl©)

Since y = f(c) iff ¢ = g(y), the result follows. O

As an application, let » > 0. Since for n > 0, the function f(x) = x" is
continuous on [0, b] and f’(x) = nx"~! # 0 on (0, b), its inverse g(y) = y'/" is
continuous on [0, »"] and differentiable on (0, b") with

1 1 1 (R
= ZyW/m-1,

’ s = — =

EO)=FGon ~ neOV T m v
Since b > 0 is arbitrary, this is valid on (0, 0c0). Similarly, this holds on (0, c0)
forn < 0.

By applying the chain rule, for all rationals r = m/n, the power functions
Flx)=x"=x"I" = (x™)}/" are differentiable on (0, oo) withderivative f/(x) =
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rx"1 since

m A
m/n)—mmxm -1 _ _x(m/n) -1 rx’ l.

(X) ( xm)l/n) m)l/n— ( m)l
1
n n
Thus, the derivative of f(x) = x" is f'(x) = rx"~! forx > 0, forallr € Q.
Using the chain rule, we now know how to differentiate any algebraic function.

For example, the derivative of

£ = 1“

1S

’ _l(l_—_x_) 1/2.(__2_)_ Sex O<x<l
Fe=3 e A+222) ~ A +a)/T-x '

Now leta > 0 and let » < s be rationals with r < a < s. We wish to compute

2.1) lim g
2. x~1+ x —1

for any a € R. Recall that, for a € Q, this limit is al®~! = a. Since for any
x, — 14, the sequence B, = (x3 — 1)/(x, — 1) lies between the sequences A, =
x'—1)/(x,—1)and C, = (x5 —1)/(xn—1), the upper and lower limits of (B,) lie
between lim,, »oo Ap = r and lim, so0 Cp = 5. Sincer < a < s are arbitrary, the
upper and lower limits both equal a, hence, B, = (xf —1)/(x, — 1) — a, hence,
the limit (2.1) equals a. Since f(x) = 1/x is continuous at x = 1, x, — 1—
implies y, = 1/x, = 1+, so,

x_l_ 1/yn'--l . 1—a y: 1_ -
'}}‘rgoxn 1 nl>'oo 1/yn—1 nl}'r?oy" . Ya—1 e
Thus,
x? -1
lim =a.
X=>l= X — 1
Hence, f(x) = x° is differentiable at x = 1 with f'(1) = a. Since
a__ ,a a __
Iim i . =c*! lim (_x@_l =ac®*™!,
X->c X —¢C xjc—1 (x/C) -1

f is differentiable on (0, 00) with f'(c) = ac®~!. Thus, for all real a > 0, the
derivative of f(x) = x% atx > Ois f'(x) = ax®!. Using the quotient rule, the
same result holds for reala < 0.

As an application, let v be any real greater than 1. Then, by the chain rule, the
derivative of f(x) = (1 +x)* —1 —wvx is f'(x) = v(1 + x)*"! — v, hence, the
only critical pointisx = 0. Since f(—1) = —14v > 0= f(0)and f(0c0) = 00
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the minimum of f over (—1, 00) is f(0) = 0. Hence,
(2.2) (1 +5b)’ > 1+ vb, b>-1.

We already knew this for v a natural (Exercise 6 of §1.4), but now we know this
for any real v > 1.

Now, we compute the derivative of the exponential function f(x) = a* with
base a > 1. We begin with finding f’(0).

If0 <x <yanda > 1,then,insertv =y/x > 1andb=a* -1 > 0in (2.2),
and rearrange to get

a—-—1 a -1
<

i O<x <y.
x -y =Y
Thus,
. oa*—1
m; = lim
x—0+4 x

exists since it equals inf{(a* — 1)/x : x > 0} (Exercise 2 of §2.2). Moreover,
m, > 0sincea* > 1 forx > 0. Also,
a* —1 a* -1 a -1

m_ = lim = lim = lim a*-
x—0— X x—0+ -—X x—=r0+ X

=l-m+=m+.

Hence, the exponential with base a > 1 is differentiable at x = 0, and we denote
its derivative there by m(a). Since a* = aa*~¢,

lim —— = g lim ——— = a‘m(a).

X—* X —C x—=>c X —C
Hence, f isdifferentiable onR, and f/(x) = a*m(a) withm(a) > 0. If m(a) =0,
then, f'(x) = O for all x, hence, f is constant, a contradiction. Hence, m(a) > 0.
Also,forb > 1anda > 1,

aX c X=C

-1 log, byx __ 1
m(b) = lim 2= = lim &)
=0 X x—0 X
. axlogab -
= }E)I(l] ——‘-x— = m(a) loga b,

by the chain rule. By fixing a and varying b, we see that m is a continuous, strictly
increasing function with m(co) = oo and m(1+) = 0. By the intermediate value
property §2.2, we conclude that m((1, 00)) = (0, 00).

Thus, and this is very important, there is auniquereal e > 1 withm(e) = 1. The
exponential and logarithm functions with base e are called natural. Throughout the
book, e denotes this particular number. The decimal expansion of e is computed
in §3.4. We summarize the results.

Theorem. For all a > O, the exponential f(x) = a* is differentiable on R.
There is a unique real e > 1, such that f(x) = e* implies f'(x) = e*. Moreover,
f(x) = a* implies f'(x) = a” log, a.
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For a > 1, this was derived above. To derive the theorem for 0 < a < 1, use
a* = (1/a)™ and the chainrule. O

In the sequel, logx will denote log, x, i.e., we drop the ¢ when writing the
natural logarithm. Then,

€8~ = x, loge* = x.

We end with the derivative of f(x) = log, x. Since this is the inverse of the
exponential,

1 1
a/®loga xloga’

fx)=
Thus, f(x) = log, x implies f'(x) = 1/xloga, x > 0. In particular loge = 1,

s0, f(x) =logx implies f'(x) = 1/x,x > 0.
For example, combining the above with the chain rule,

1
(loglx[) = 5 **0

Another example is (x # 1)

o (F=2Y] = 1 x—l'_(x+l) 2 2

B\ x+1 _(x—l) x+1/)  \x—-1) x+D% x2-1
x+1

We will need the following in §3.4.

Generalized Mean Value Theorem. If f and g are continuous on [a, b}, dif-

ferentiable on (a, b), and g'(x) # O on (a, b), there exists a c in (a, b), such
that'?

f&) - f@ _ f'©
gb)—gl@ g©’

Either g > Oon (a,b) or g < 0 on (a,b). Assume g’ > 0 on (a,b). To
see the theorem, let 2 denote the inverse function of g, so, k(g(x)) = x, and set
F(x) = f(h(x)). Then F(g(x)) = f(x), F is continuous on [g(a), g(b)] and
differentiable on (g(a), g(b)). So, applying the mean value theorem, the chain
rule, and the inverse function theorem, there is a d in (g(a), g(b)), such that

fb) — f(a) . F(g(b)) — F(g(a))
g(b) — g(a) g(b) — g(a)
’ / ’ f/(h(d))
=F(d)= f (h(d)h'(d) = 3
(d) = f(h(d))h' (d) 2 ()

Now, let ¢ = k(d). Then, cisin (a, b). The case g’ < 0 on (a, b) is similar. []
We end the section with 1’'Hopital’s rule.

12¢(b) — g(a) is not zero because it equals g’(d)(b — a) for some a < d < b.
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I’Hopital’s Rule. Let f and g be differentiable on an open interval (a, b) punc-
tured at ¢, a < ¢ < b. Suppose that lim,_,. f(x) = 0 and lim,_,. g(x) = 0.
Then, g'(x) # O for x # c and

. f'(x)
| =1L
x>t g'(x)
imply'3
(2.3) lim M =1L.
xX=>cC g(x)

To obtain this, define f and g at ¢ by setting f(c) = g(¢) =0. Then, f and g
are continuous on (a, b). Now, let x, — c+. Apply the generalized mean value
theorem on (c, x,,) foreach n > 1. Then,

fGa) _ FOm) — fe) _ f'(dn)

gxn)  gxp) —glc) g'(dn)

since ¢ < d, < x,. Similarly, this also holds when x,, — ¢—, and, thus, this holds
for x,, —> ¢, which establishes (2.3). 0O

The above deals with the “indeterminate form” f(x)/g(x) — 0/0. The case

f(x)/g(x) — oo/oo can be handled by turning the fraction f(x)/g(x) upside
down and applying the above. We do not state this case as we do not use it.

— L,

Exercises 3.2

1. Showthat1 +x <e* forx > 0.

2. Let f(x) = e*! —1. With g(y) as in Exercise 3 of §3.1, by direct computation,
show that g(y) = |y[logjyl — Iyl + 1 for |yl = 1 and g(y) = Ofor |y] <1
(Exercise 9 of §3.1).

3. Show that lim,_,¢log(1 4+ x)/x = 1 and lim,, »o(1 + a/n)" = e° fora € R
(take the log of both sides). If a, — a, show also that lim,, 400 (1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>