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CHAFTER I

Chapter I PROBLENS

1. (a) A= {(B,W), (P,G), (G,N), (G,G)). The sample spacea contains four
Outcomes; an outcome ftself is a 2-tuple where the first component
reprasents the result of draving from urn one and the sscond comsf-nent
frm urn two.

(b) The event space is the collection all subsets of the sample space.
There are 16 such subsets. .
Le (0.0, (B,0), (6,6)), (60, ((6.0)),
LB, (8,0)), ((B,W), (6,M), (AW, (G,G)], ((B,C), (G.&)),
((8,6), (G,6)), ((G,™), (,G)), ((B,%), (B,"), (G,¥)),
((3,%), (3,6), (G,G)), L(B,W), (G,M), (G,6)}, ((B,6), (G,M), (G,G)))
(c) 1/%
4) o

2. (a) There cr; many vays to describe the outcomes of this expariment.

For example, one could number the balls in urn ona as 1, 2, J red;
4, S-white; and 6 blue and those in urn two as 1 red, 2, J white;
and 4, S, 6 blue.
(1) Then 0 = ((11.12): Fp* 1, ..., 6 and by " 1. (6, where

ll 1s the number on the bLall drawn from urn | and

12 is the number on the ball drawn from urn 2.}
Note that there are 36 outcomes of this experiment,

- (1) Let A denote the event both balls are red,
B denots the avent both balls are white, and

C denote the event both balls are blue.

Then P(both balls same color] * P[AUBUC) & P(A) + P(B]) + P[C]I-
3 L] 3
M T
(111) PLAY = 2 < 4 pra)
% ‘%" .

12-9°% 12:8°%
(b) (1) -——;;; . (11) T IO
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7.

10.
L

18.

0.

Weshiln

(a) Q= ((ll.lz): ll ®1,...,5 and I, = 1,...,5, uhere {, 1a the number
. oa the first ball drawn and 12 is the number oan the second ball drawn}.
3 - ((11.12): i) =1,2,3 and Iy = 1,...,5)
L ((11.12): fpel,..,5 am {=1,2,3)

U ((11.12): 1 =1,2,3ad i,%1,12,3)

1
SRLVELGLINS 3
(o) Qs ((11.12)1 £ ® L5 and £, = 1,00.,5 but 1, 7:1,).
U ((11,12): 11 ®= 1, 2, 3 and I % Lieeos5 but ll ? 12). etc.
P[Ill ] %L% , etc.

Using H far hit, M for miss, R for right hand and L for left band, the event
that tha participant 1s successful is

(CHHHY, (HH,M), (H,HH,)Y = A, say.

Undar strategy RLR, P(A] « PP, ¢ 9192(1'P1) ' (l-pl)pzp1 and

under strategy LAL, P[A) = PyP,Py + pzpl(l-pz) . (1-p2)p1p2.

(b) P[A wlll beat B In three out of four] » pY v 3p3(1-p) = ( )p’(l-p) + p*

Y
3
P(A w11l beat B in five out of saven) = p5 s 5p5(1-p) + 15p5(1-p)2
. (Z)p’(bp)’ + (Z)P‘(l-p) v p?

A BB and ps 1/2 is a counter-axaaple.
P(AB] « P[A) ¢+ P[B] - P(A\B) > P[A) ¢ P[B] -~ 1 = )-a-8,
(a) (1/3)%
() 3"
{e) 31/1% + 4-3(1/32)% = 5727
(a) Pltotal of 9] = 25/216; Plrotal of 10) a 27/216
(b) P(at leant one 6 in & tosaes] = 1 - (5/6)%

P(at least double 6 In 24 tosses] = ] - (35/35)2%
(c) Plat least one 6 with b dice) = 1 - (5/5)8

Plat east two 6's with 12 dlce) = 1 - (5/6)}2 - (12)(1/6)(5/6)11 *

20.

22

23

an,

25,

26,

27,

3
CHAFTER I
This is slallar to Prablem 27,
25
(365)25/(355) .
(s) 21 5) 21
211 + 3/ \10
(?6 26 "
13 (13 .
!:!(n-l)r-k .
(a)’ = .
n
Conslder that a single coln is tossed until the first head occurs.
-P[flrst head occurs on toss )= (1/2)’.
PlAce wins] * (1/2) ¢ (1/2)" o (1/2)7 o ... = W/7.
P(Bones winal = (1/2)2 « (1/2)% « (/)% + ... » 2/7.
Plclod wins] = (1/2) + (1/2)8 » (1/2)% + ... = 4/7.
Plsingle ring formed] a (4/5)(2/3).
Plat least one ring formed] = 1,
You might test your Intuiticn on this one and guess the ansver tefore ‘ou
proceed. Let L {Wr. Bandlt does not get cought under strategy 1) wiere
strategy 1 Is to sell all twenty at once; strategy 2 is to sut four stilen
cattle In one set of ien; strategy J Is to put three stoien cattle In cne set
[am
of ten and one In the other; and strategy 4 is to Put two stolen cattle in each
eet of ten.
(u 16)
o/ tu
P(A.]) = o
L]
(n)(a) (lo)
0i\2 2
PIAY = S5y e 10)
( 2 2
BIE e
PIA.] = 0/\1 : 0/\1
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CHAPTER 1

W, (b) Take BIC and P[A) > P(2] for a countar-example,
3l. Use the corullary of Theores 29.
3. This is eimilar to Problem 70. Use Bayes' fFormula,

3. (ﬂ) LR N ]

s & AR
l. ..c.. ‘n

3, Use Theorem 28.

3%. Use Bayes' Formula.

80. -This problem is known as the “liars problem™, It can be varied by changing
the oumber of llars. In fact, the reader might want to try to solve It for
oaly to ar thres liars before reading the solutlon. As i3 the case with most
"story” problens some "modelling" {s requlred. Lat AT = {statement that A makes
is true), and nT * {D says that C mays that B says that A i{s telling the truth};
then PEATIDT) is what i{s sought. Also, let
Illl ® (3 says that A Is telllng the truth), and
G {c says that B says that A is telling the truth).
Note that ET = {C says that B says that A {s not telling the truth) and
simllarly for iT and ET' Actually some 'modelling” has been done in defining
thesa avents; for example, it has been assumed that B doas say that A's state-
ment {s either true or false. Note that
13 = PIAL) » P8 |AL) = PleylBg) + r[nrlcT] s P[CTIBTAT] ] P[DT|CTAT]. and
/3 0 p(A) w pLB | - Plc |B,] @ PEDLIT,) = PlC |BoALd = PIOLE AT
Impliciely, It has been assumed that not only does each liar 1le with probabllizy
2/3 1o any given instanca, but also the llars lie Independently of each other,
The soluticn given here Includes the solutiecn for the two and three liar proble-s.
POO;Y = POD JALTREALD o PIB JALIPLALY » (1/3)1/3) + (2/3)(2/3) 2 5/9, se

PR, (A DPLAL)
r[L‘,ll.l.] . —P[m— ® 1/5, the solution to the tuo liar prol-les.

42.

46.

48,

CHAPTLR I

Now P[CT] = (173)(5/9) ¢ (2/73)(%/9) = 13/27 and
r[cTIAT] = Ple B [A ] ¢ Ple B lA]]
. P[crlbrAT]P[lTlAT] + P(CTIHTAT]P(BTIATJ
= 5/9, hence
P[ATICT] L] 121%%%}%%% = 5/13, the solution to the three llar probles.
Similarly, P(D ] = P[DTICT]P(CT] + Pl |C IPIE)
= (1/3)(13/27) « (2/73)(14/27) = u}1/81, and

P(DT|AT] = P[DTICTAT]P[CTlAT] ' P[DTIETAT]P[ETIAT]

. s (1/3)(S5/9) + (2/3)(u/9) = 12/27, and

finally,

(13/21)(1/3) _ 13
PlA[D,] YV TR vy

(a) 2/3

(b) u/5

(c) 1

(b) A and B dlajoint and P{A] # P(B] gives a counter-exarpla.

Let Aj s (exactly ] seeds out of the fifty gemmlnate).

Hodel by assuming each seed germinates with probabllity 0.96. P[pachage w!l}

violate guaranteal] =

50 50
1ea- Toradea- I ()csertcon®d,

uy
PLA
go i jaus  d jaus

b
Intuition says the answer ought to be greater than 1/2.
Let A = {tested stone ls real)

B = (son gets real diamonds)
We want P[8|A) and P(B|A). Symmetry suggests that these tws conditional
probabilities are equal,

Define C = (box with two real diamonds fs selected for testing) and mo-el

by asauning PIC] = 1/2, P{A|C] = 2/3, and P(A]E] = 1/3.



8.

o

Thea P(a) = PLAJCIPICY ¢ PIAJCIPLED @ 2/3 + 1/2 ¢ 173 - 1/2 = 1/2.

'lllﬂ . u] . P[uﬂcmggﬁ PLAB|EIP[E)

', ;m)(m) + (0)(1/2)
1/2

= 2/3. Similarly
".I‘) A [o)(l/i)l;z(tll)(l/ﬂ = 2/3.

Lot & @ {player vins). Let I] = {total of § on ﬂ.ut toas).
pa)s * PiAln RUCRE
(o) p ¢ ~p'(1 =p) ¢ wp(1-p)? s & (aay)

) p% 0 8p¥2-p) ¢ 2p2(1-p)2 = b (say)

{c) po ¢ (2-p)b

Berk first In & corner. The random player must then mark in the center to
beap you from winnlng. MNext mark one of the two spaces adjacent to your first
aarh ete. Your opponent's chance of forcing a tie under this strategy

In (3/8)(1/6)(1/4)(2/2). Mo other atrategy does better. Your chance of
wisalng fs 191/192. How does the problem change If you allow your opponent

(6 serh flrat?

Agply Bayes Tarwmula.

L ViYW Y2 )

{e) Outcomes are yellow-smooth (Y-5), yellow-wrinkled (Y-W), green-smooth (G-S},

and green-wrinkled (G-W); thay are equally likely.
{»)

-5 | v-4 | 6-5 | Gg-w

§/16] 37161 3/16] 1/16

(o) a[a) s P{AjB)P(8] . (.95)(.05) ]
PLA|BIP(BY + P(A]BIP(B) (.95)(.05) ¢ (.05)(:95)

p(.0s) L 171
PT03T ¢ (1-p)0.33) implles p 193 & 9942,

te)

Nf -

) .90

CHAPIER 11
Chapter 11 FROBLEMS

Several of thess probleas require showing that a glven function ia n p.d.€. Thls

simply involves verifying the conditions of Deflnition 9.

1. (a) fl(') and fz(.') 3re casily shown to be p.d.f.s. Also, the integral of
£(x) 1s_clearly unity, One can show that f(x) 2 0. -

(b) You can disprove thls by taking o, * -1, 02 =2, fl(l) " 1(0.1)(") and

f.‘,(u) s Iu'z)(x).
2. The median {» a.

. K
3. Need xf x2dx » 1, which gives K = fourth root of 3/2.
-K

%, (a) Slince rx(x) can be written as a function of (x-a)/8,

lets do it. That is, write F (x) = f(—)-

Now ztx] f (1- r(“"‘ ) Jdx /
-a/b
- af (1- F(y))dy - af F'(y)dy
/ -

-
o o
= AU (1-F(y))dy -j F(y)dy '[ (1-F(y))dy o] I‘(y)dy]
o -- -a/B -a/8
- o
. ‘U *(1-F(y))dy -f F(y)dy} + a.
[+] -

g[x] equals a plus a quantity that does not depend on a; hence If o is

increased by 4a so s f(x].

S. (b) X is a discrete random varlable taking on values 0, 1, 2, and P(X12) = SYO LR

PIX=1] = 2(1/4)(3/¥), and P[Xx0) 2 (3/4)2,
{c) £0x] = 1/2 and var[X] = 3/8.
7. (a) The game ends at the first trial if and only {f A wins flrst match; the
game ends at the second trlal if and only if B wins the first two matchen;

the ganme enda at the third trial if and only {f B wins the fir:t match and




CIAPTER II

4 wing the next two; stc,
Mxs g)a () gy, .
@ g Iyt e am [ jamit. .
il i=

varlx] o £0X0) - & BOX(X-1)] ¢ 2 - 4
[ sg-na?d -2 v am T g-yami-2. .
Jol ju2

(e) B wins tha game 1f+gnd only If the gane ends on an even numbered trial; hence
PP wins the game 3« (1/2)2 4 (1/2)% 4 ... 2 443,

Also, let N probaylllty that A wins tha game and Py * probability that B

wins the gass, MNote Pp =1 - P, In order for B to win the gama, B must

win the flrat match, having done so B fs then in the same position as A at

the start of the game, hence Py * (1/2)pA. Py = (1/2)pA and pasl-p‘ imply
Py * 1/2.

frobleas 8 and 9 are very sinilar. The density of 8 [a "trlangular® uhereas

that of 9 e "parabolic". Both denaities are symmatric about a.

te) E(x) = a and var[X) = 8276

(d) Tor o0 « g < 1/2, ‘q . u-hﬂ/fa

write ¥y and o: for tﬁo »ean and variance of £(.;0) including 6 =2 0 and 8 = 1.

(3) vyo0u v (1-8)u,
0: . la: ¢+ (1-0)a2 o 0(1-0)(u -u )2

(?D e (£) ¢ (l-l)-o(t).

(a) 16728

(d) Model the problem by assuming that the bombs fall independently of one
another. Then If at least one of the three large bombs falls within 40 feet

of the track, trafflc will be disrupted. Answer is 1 -.(9/25)’.

(o) FLOX-2I3) » BL(X-u)2) ¢ (y-b)2 which Is minimfzed when b a .

(d) The result follows from the hint by noting that the integral on the right

band slde of the equality is non-negative for all b and zero for'h = m,

14,

15.
17.

20.

2u,

CHAPTER II

To prove the hint assume m < b (m » b is simllar), wrlte EClx-b]] - El|x-n]] =
b o

f (b-x)I(x)dx +f (x-b)F(x)dx +
b

-

(n-b)F(x)dx
m
b ™ -
—{/ (m-x)F{x)dx 1] (m-x)F{x)dx + (u—l)f(x)du)
. b ]
=
- f (x-b)f(x)dx + (B-@) [F(b) + F(n) = F(b) - 1 + F(m)]
b
-
- / (x-b)f(x)dx
b

(a) 21725
.(b) ¥ ® 0 and g " 1/2, hence
P[lx-ux] kol /e 1/,
(¢) See problem 20.
£0x] = 1 and var(x) = 1/2.
No, by Chebysher inequality.
PIX 5 utd 2 POX < ptd = 1 - p[(x/y) Bt 21 -EL(XA)/t et - (1/1) ty
Chebyshev inequality,
(a) fx(x;e) 20 for -1/2 ¢ 8 < 1/2.
) EIX1 » (2/3)8; median = ll-’—;gﬂﬁ’_l_,_’. for 8 # 0.

(c) 0=,




CHAPTER III

Chapter 111 PROBLEMS

1.

2,

(f) Mo, the varlance of a negative binomlal random varlable cannot be sealler
than its mean.

(h) Rectangular, normal, logistic, and beta with a = b, Note that the
binomfal for p » 1/2 and n even does not work.

(n) MNo.:

(o) Yes, if the distribution of X is symmetric about zero.

(b) If r €1, the mode is zero. If r > 1, the mode Is (r-1)/X.

(b) 26(-2)

(c) P(xs0] = o(-u/h{u) ) = #(-1/72) for h(u) = ap?, u > 0.

Let X be a random variable denoting the low bid of the gompetition. X ia

uniformly distributed over the interval ((3/4)C,2C). Let P denote profi: ani g

the amount the contractor shouid bid. MNow P = (B-C) I

. 2c
£te) -f(n-c)x
(/v
ic

. (—:-:-C-)- (2C-B). MNow maximize with respect to B and cbrain B = 5 -
=)C

[

(8,2¢)¢X) and

J(XE (x)dx = (B-C) yx2c- 3e)"ax

(8,2¢ Yp,2¢

(a) Let k ® number he should stock and X the number he can sell in 2§ days.

Want the minimal k such that P[X € k] 2 .95 where X has a Poisson distsi-

% o7199(1 00yt

bution with paramater 100; that is, solve for k in I I -9
{=0

From a table of the Poisson distribution, k & 117 1is obtalned. sing the

k-100
10

(b) Let 2 = pumber of days out of 25 that he sells no items.

normal approximation and ¢(

) = .95, k ® 117 i3 cbtained.

Under appropriate assumptions (what are they?) 2 has a binomlal 4!stri-ytis-
with n = 25 and p = e, Hence E(z) = 25¢7Y.

(a) Y has a binomial dlstribution with parameters n and q.

(b) X has a binomial distribution with parameters n and 15/36.

(c) (X + n)/2 has a binoalal distribution with paraseters r. and p.

Hence £ [x] = n(2p-1).
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{4) Rdey that I()(p q“’-p q ]- {d(uy)ao.

|
. Mete that 1§°d’ ® 0, hence it sufficas to show that the firat few dj'a 28,

are positive, and the remalning are negative. But tlj 2 0 if and only {f
§1nlog (q,/ql)llol(plqzlpqu)

(Use the result of Problem 28 for an alternats proof.)

2%00 2 500
00~

\ 000 + The hypergeacastric can be approximated by the bincaial
1 “ 100 % 29,

oad the binomlal can lo turn be approximated by the normal which gives a numari-
sal answar of appronimately 1 - #(2) = ,0228
Let X denote the numbar of defactives In the sample. Assume that X has a 30.
bisealal distribution.
(o) PIXal) ® 1-P(X v 0) = ) - (,99)%0
(d) Want PIX 2 }1@3.95; or, want P[X = 0)=3.05;
f.oe, (.9)" 3,05, or, nas29.

P oot -0 L g

T™here 1o a aispriot in this problem. The mean was {ntended to be 200 rather than
a0, Want

rfEsiso) 2 Lou, e, o( ) <0, whieh lnplles o ag50/1. 282 =319,

(o) f(x) s f 'y an'p[ (1/2)(n/8)?)dx

s (/s [x(us/z—-) expl-(1/2)(x/8)21dx

» 8/24/2 by nc;gnh.lnz that the last Integral ls the variance of a
norwal distribution with mean 0 and varlance l’, vhich shows how a little
knowledge of probability can be an aid to integration.

var(X) o 82(4-v)/2.

{(b) No.

1 |2 3 nlsl‘e[?lals
3 11|1_‘:’_13 1_?.139. 5 13 ]2
W |s1|a|ar nlif!if

13
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Assume true and differentiate both sides ulth respect to p to obtaln the
!lqlullty:
L0 < Faen(ele st apotes,
The inequality ls verified by noting the (§41)st term of the first sum cancels
the Jth term of tha second sus. Work backwards.
Let X » § of successes In first n Bernoull{ trials
and Y = # of failures prior to rth success.
Note that (Xsr-1} & (V>n-r) hence F (r 1) s P{X<c-1) - P(Y>n-p) » 1- ryin-r),
8z, = (516 - (00N e 0 for A > -1,
&z2) = (vt - 26000 -0 ) EL-n A a2

= (2/A7){[1/(2241)] - B(2s1, A¢1)) for A » -l
Ez}) =0
€023 = (2/3%) ([1/(u2e1) - WB(3Ae1, Asl) + 3B(21+l, 20+1)]) for A » -k.

for A > - 1/3,

The last part ia misstated. The Intent was to get two different A's,

say Al and Az. such that Z*l and Zh have the same skawness and kurtosla.

If A and l, are sought eo that 7.“ and 7, have kurtnain equal tn zerao,

1
then ll','u .135 and lz'-'b 5.20 will work,

Az
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CHAPTER 1V

Chapter IV  PROBLEMS

1.
2.

S.

10.

11.

(;) True (b) False (c) True

- o - °
() £(x) -fo (1-F (2))dz -f--i‘x(z)dx «L (1-r (z))az -]_.l"(z)dz s §5(r)

Using Eq. 6 of Chapter 11 (Page 55).

(b) There are many counterexamples. For example, define
F(x) = (112)I£o.1)(1) + 1[1'_)(1) and
rr(x) = (Slﬂ)lln.“)(y) + Ic“._)(y).

(c) True. (d) False. (a) True.

.(f) r‘(:) s P(Xs3) = P[X+lszel] = P[Ys2¢1] = r'(zOI)

Yes.

(b) 1/e

(a) 1/36

(b) For 0 < x< 1, f'Ix(ylx) s O NV a-x).
(b) 1/8*

(c) /6

(b) Mo

€LYl = Z(QY|x11 =1 ¢ p

PlX=Y]» gl’(lﬂlt-j]l’[ﬁj]

P(x=3]Y=3)P(¥]]

L
. Z P[X=13P(Y=}) (using independence)
I 2-p) « prt2-p).

(a) No. (b) Yes. (c) No. (d) Yes.

g

e o et




e CHAPTER IV
fis l'.(u ¢ Fyly) - 1 s PLXsx) ¢ P(Ysy) - P[Xsx or Tay]
' ¥ TR l'x"(l.y).
(..,) s MYsa; Vsyl$ PlXsx] = T (x); also
..'(l.y) st (y).
. (&) My-e-puss) = Plasdx-a-Busz) = P{X-p<z/8] = P(-(X-u) 5 3/8] =
o M-(v-0-04) ¢ 2). |
M. {a) Slace £,(x) = £,(z) = I, ,)(x), X and ¥ are independant if and only If
ae 0.
. oov(X,Y] » -o'rlf l(l-‘l)(y-‘l)(l-h)(l-?y)dxdy =0
if and anly l!oo e 0.
(b) JlAree 1 = §(XY) » cov(X,¥] + "
te) P(let 1) = 1/2.
(4) Length of perimeter = 2(X ¢ VX%¢79),
17. () /18
' (e) ‘[111 * 15/0; §1Y,] = 25/8;
var(Y,] » 70/16 - (15/0)" and varlY,] = 170/16 - (25/8)?
(o) /12
10. (¢) 3% (d) Solve for @ in 1-e™ - ma™ = 1/2.
w 1-¢1 (0 o
0. (s) Do (b) first. ‘
) £ (8) » £ (a) o ma™ 1, ta).
“(e) 1 ¢ (x/2)
(0 3-w2.46
(a) 172,
(e) fx(l)f'(,)-

17
CHAPTER IV

20. (a) P[|xev|s2]x|1 = II f(x)£(y)dxdy
xty s?ll

3
f [ f(y)dy | fix)dx ef Ely)dy | F(x)dx
In x

s 2‘[.([ f(y)dy} flx)dx + 2‘{.{] f{y)dy] f(x)dx (by sysmotry)
In
. f.[f f(y)dy\ f(x)dn ¢ 172 > 1/2, -

2. Note that £IX-Y] = £ [E(xX|Y]] - £1¥] « 0, so
var(x-v) = S1x-1)70, but £10x-171 2 £0x?) - 26(xv] Fivdy e
EIxLx|x1Y - 28[xv]) 'ftvt[xm] =0,

22, l’(nAj]ll-P[f\Aj]-].-P[uAj]>l- {P[A,le-t,
i=1 el 3=l

23. (e) fx(xo)lil-rx(lo)]

25, Let Y denote A's score and Z denote B's score. Then X = Y - 2, 2Z {g un{formly

dlutrihuted over (0,3).
r[x<x] . P[x~x]r-1] p + P[Xsx|y: 2](1 -p) = P(1-2sx)p ¢ P(2-2¢x)(1-p). Ctc.

30. P[Xax] = { 9[x-:lv=y]P[v-y] s I " ™™ W syt 0 Gp)*e ™ P,
y=x yzx

{.s. X has Paisson distribution with parameter Ap.

32. (8) Y|xas5~N(10, 25(1-p)), so .95 a PlucY<16]|Xxs5] » o(-—-f-) - o( -6

6 sY1-p7 $/1-p7
which implies ———— = 2, hence p = u/s,
5¢l-pz
L]
(b)

This will be easy after the next chapter when we learn that X ¢ Y~u N(15,26),

giving P[XiYs18) ut————“[' IS}J * #(1//26). For now, P{XeYslo)] =

ff 1["‘“10 25()!’}{1!!1_\!‘ = f ¢lulelv)dudy = (using symmetry)
xXty<l6 t5vel

1/7/26
_{J #(u)elv)dudy = ¢(1//76).

<. (a) Hultinomial with k ¢ | = 4; Plno heads) = 1/8; Plone head] = 3/8; etc.
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Chapter V

1.

(a)

GILAYTER ¥

PROBLENMS

°°"[x1 +

hence D[Xl + Xy, X, ¢ Xal s 1/2,

2 ., 2
X, X ¢ XJJ ag? ; vu'[ll * le ] vur()(2 * 13] " 29

19

2 _ 42 2 2
(b) (03 e CH t o3).
M) 1 (o) by y " V2 (D) £,(x)e (y) (c) 1/2.
(a) £Ur] = SUECY|XI) = §(xe1/2] = 1 3 FGOI, (). -
k-1 X
(d) cov(x,¥) = 3/12. 4. (a) P(X » x] a —-m-’i— C oD for K om d,i.. M-Kel.
(o) 1N, " X c( l‘fl -
§pecial case of Problem 6. (b) P[Z = 3]« 1= l—lz)r (Hﬁ for z = r,... H-K¢r.
The joint denafty of X and ¥ night have two, three, or four mass points. Consider z 1
the case of four mass points. Lat p,, & P[Xax i Yoy,) for {, § = 1, 2, where (x,y) u <33 u 31 lt2,, u | ca ,1) ’_ (u 1)
4 1 ] (e) £, Gy l 3 I I | 3
» T g . - . — . =
B ¢xady <y [ O R |s § a
Write Pp. " Py ¢ Pp " P[x-ul], 5. According to the deflnition of expaction, £[Xl] does not exist; hovever, thare I:
Pp. " Py ¢ Py, ® P[x-le. . b0 harw in saying 8()(1] 5 -, E[Yll * n/(n~-1) forn » 1.
Py ® Py, Py * p[yaylj_ and 6. (a) Since X ¢ max(X,Y], £(x] 3 flmax(x,Y}); siailerly,
P.g " Pip ¢ By ® PlYay, ). E0¥] 5 Elmax(X,Y)), hence max[E(X], £ [¥3) < £ (max(X,¥]].
Let U » (X-x )/('K.a'll) and V = "'71)’(y2'y1) (b) wman[X,Y) ¢ ain[X,Y] = x ¢ Y.
Now cov(X,Y) = 0 {f and only if cov[U,V] = 0 and X and Y are independent if 7. (a) Note that X and Y are independent and uniformly distributed. Apply the
and only if U and V are Independent, corollary of Theorea 3 on page 1l80.
cov[U,¥] = FLUV] - ZLUZIV] = Paz * P3P, (b) Theorem 8 will do {t.
cov(U,V] » 0 implies P22 * P;.P.p which in turn implies independenca. 8. The cdf of Z » max[X,Y] {s given by
ll: A3z
(1- Hli-e )l(b._)(z)
1 1
- - - 1 1 1
%0 £(z] = Emax(x,¥]] f Q-Fp(a)gzs[ (e300 iz, 1
o 2 0 S PREE TN
g, x2 - XIN R(0,2). The distribution of (x2 - X‘L)z can be found uslng Cxample 139.

Simi{larly for Yz - Y1 and (72 - Yl)z. They are independent so use Equation (25)

to £ind the distribution of 22 = (x, - "1)2 + 0y, - 71)1.
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CHAPTER V

10, (a) Let Y. be the 1ife of the fuse that lasts the longest. Find n such that

.
12.

3.

18,

18.

16,

17.

(»)
o).
(a)

(db)
(a)

(b)

P[Y‘ > .8) = .95, n a1y will do.

9/10.
18.

This problem is starred, not because it s difficult, but because it ia
19,

massy. The possible valuas of Z = X/(XtY) are zero (If X = 0), one

(If X >0 and ¥ = 0), and a/b where & and b are positive integers and
a<b. P[2Z s (a/b)]) s IP[x=u; Ysy] where the sumation {s over all pairs .
(n,y) for which x and y ara positive Intcgers and y = x(b-a)/a.

T Xt (XeY)
my ey trety) = 6l R A T PLE
Write E[oy"l’Yltzl in terms of a double integral involving the joint

20.
Perform the integration by-sqparating the

distribution of xl and Xz.
double integral, completing the square, and expressing In terms of integrals
of normals.

Use the jolnt mowment generating function given in (a). e

£ LX) = £CfLaX T |x1) = ELaM OV L AT

(a)

(a)
(b)
(c)

(a)
)
(c)

Usa tha moment generating function tachnique to argue that they are

independent standard normals.
- 16 22.
S i X‘ s weight of beans in box. Assume that the xl'. are independent.
1

mean = 162 ounces and variance * 16

250 —“16(16)) = #(3/2)

PES > 250) = ) - ¢
Lat Z » number of underweight bags.

2

2~-bln(16, 1/2), s0 P(Z 5 2] = | (‘:’)uml‘.
(]

10 1

Let 2 = nuaber of numbers less than 1/2. P[Z = 5] = 54(372)

flz1 s s.

Z-~~bin(10,1/2).

1/2 using a symmetry argumant.

23,

21
CHAFTER V
(a) Both are nmd .
@) «(-2).
(a) Buy m bulbs. Assume that the llfetimes are Independent (which may not
be realistic since the bulbs are burning simultaneously). ¥ant n such that
.95 = P(Y_ > 1000] = 1 - [1-exp(-20))".
(b) Buy n bulbs and again assume independence. Want n such that P[Sn » 1000) = .93
S, has a gama distribution uith paramaters n and .0l. Using Equation (33)
of Chapter III and a Poisson table n =y 16 is obtained.
Use the moment generating function technlque
(a) gamma with parameters nr and A,
(b) gamma with paramatera Ir, and A,
(a) negative binomlal with parameters n and p
(b) negative binomial starting at n wlth parameters n and p
(c) negative binomlal with parameters nr and p.
(d) negative blpomialvulth parameters Ir‘ and p.

Z can be expressed as { X, where xl is the money received from the ith location
1

uﬁ‘r- oll is found. Z » 0 If Y = 0. Model by assuming the xi'- and Y are inde-
pendent. Y has a binomial distribution with n = lo.nnd p®1l/5, and the xl'.
are independent and ldentically distributed exponential random varlahles with
mean 50000. )
a) ET2) =EL402]¥)] « ELYIEIX] = S100,000.

(b) P[Z > 100,000|Yy»1] « o2 .

P{Z > 100,000|v=2) = 34”2 .

10 10fy=1 -2_} ¢ fuy 10-y
(¢} PLZ » 100,000] a 2 P[Z > 100,000] Yzy1P[Y2y] a ( e 2 ) 1o (l (i
‘ R RIS L ygl g S1y 5) 5)

using Z given Y x y I3 gamma distributed and Equation (33) of Chapter 111,
P{Z » 100,000} = .4 .

See 24,
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27,
20,
29.
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32,
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3.
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CHAPTLK V

I’[)(1 = ul.....xk e uu;x1 t eee kal'n

]

l(ll': Baeeasky o ﬁl‘; LAECTI AR WL D "{‘1 T tha" al

- =X, "cse= .
- - M Ak T2 *
] 1P . Az A R e 4PN
.l' ,’l .k' (n-xl-xz-...-vm)l
.-I:x1 (1) )n
nl

al (x])“x(xQ *2 . (A_k)'k(aku)""x' vee T By
* NP RS 'k'(n"x'lz_"'-'k)l WS g ‘\} Y

Cauchy.
Y has a lognorsal distribution. FlY] s £[.X] L] lx(l). the momant Zenerating
2%

functiom of X evaluated at 1. Maof[Yzl = f[o ]s= -x(z).
Exponentlal with parametar one.
Beta with parameters b and a.

-2
¥rite Y 3 L/X then f'(y) =y I(l,-)(')'
Exponential with parameter one.
Beta with the paraseters raversed.
Same a3 X.
Exponential with parameter one.

- -z
BOY-Xa2) = (p/(2-p)IQ" Doy o (@) ¢ (/2 XTI ), ye)
N

Write ¥ & Y - X, then £.(v) = (A/2)e Ivl,
One way of doing it ls to transform té. say, Ua X, VY, W= XY/Z, find

the joint density of U, V, W, Integrate out u and v and gat

1 1 . 1
fu(u) x (; Sy tn "”(0,1)(-) A 4 1(1.‘)“)'

2 ]
Veite 22 X v Y. £(2) = (287 - (/)Mo | (x) & [(873) - 22"+ (/)M () o \(3)

fz(x.) is symmetric about z = 1.

This ls starred not because it 13 difflcult, but because the anawer, which can be

expressed in terms of a Bessel function, is not simple.
P(Y-Xz2] » I PLY-Xaz|Xsx]P[Xsx] = P(Yax+z)P[Xsx] for z an integer.

x%0 x-nax{ﬂ ,-2)

N,

§6. -

LY
49,

s0.

$3.

S4.

s7.

59,

23
CHAPTER V

Let X have parameters a and b and Y have parameters c and d. b @ d w1l and

a® ¢+l will suffice.
2

The cdf technique works. 22 o 1(0 .)(:) e
L]

X and Y are Independent; hence it sufflces to find the marginal distribution

of X° and Y2,

The transformation {s not one-to-ons. See Dxanple 19,
The dlstribution of X ¢+ Y {s trhniular and given in Example 4.
P(Z & 2] = PIXeYsz;X+Y$1] + P[Xe¥-1g2; XeY>1) & P(Xevcz) ¢ Pl1<Xe¥c142) o 3

for 0 < 3 ¢ 1. That {s 2 is unlformly dlstributed over (0,1).

. A2y o 2V2 2
fﬁ-'z(yl'yz) A ¥,e (ll(loyl) ]1(0.-)()'1) 1(0._)(y2) .

The transformation {s not one-to-one. Use Theorem 1u. Yl has exponential dls-
tribution with parameter 1/2 and Yz has a standzrd Cauchy distribution. The:
pre lndcpcndon‘t.

(@) ECxer] s £LE(XeY]2]] » 1.

(b) fx.'(x.y) lffx.ylz(x.ylt)fz(z)dz a1
(c)

(0.1)("”(0,1)(’)‘ Are independen-z.

X.le(x"'lz)dy s [z ¢ (1-:)(101/2))1(0.“(1) which depends on

fxlz(xlz) -]f

zZ 80 X and Z are not independent.

(d) Straightforward transformation using distribution of X and ¥ given in (:).

upu
(o) Plmax[X,Y)sulzez} = P[xcu, Ysu|Zaz) -[f (ze(1-2)(xey) ddndy = zu?e(l-z)u!
eJdo

for 0 <y <},

(f) [f(X.Y)IZ(l's-x!‘)d? 2 (z ¢ (2-2)e)s 1(0.1)(.) ¢ (2-3)1
Assume independence

{12381
of functioning components and capitalize on the forgetfu ness

of the exponential.

(a) Let Y » Yy t0,+ Y, be the life of system, where Y, is that part of the

life when exactly j components are functloning. '!3 Is the mlnimum ~f t »ee

independent exponential random variables each with rate paramater A3, 1o Y,

has an exponential distribution with paraseter A. Glallarly for Yz and YJ.'



ot - <.A--.
e e e e

P

e ks e Aokt b Bk s eide B P S e

Fig

59.

60.

6l.

62.

CHAPTER V
' Furtherscre, the Yj'l are independent, henca Y nas a gamma dlstribution
with parmtu.'a d and A,
(b) Same answer as (a).
Z i3 tha lifetioe of the system. < has cdf (1 - 2072% o -3'" (0 )(x).

mean 2/3, and varlanca 1/3.
Gampa with parameters two and two,
Fcllow the hint and use Equation (33) of Chapter IV far the joint moment

generating function of X and Y, (U,V) = {(aX ¢ bY, c¢X + dY) has a bivariate -

pormal distribution with parametars
Y, ™ ap, ¢ tvy. By Fochy t duy.
+ b%a? + 2aba o, p.
2,2
¢+ do, ¢ RCdaXUYDX,Y
2
" o0 [acu + bdol » (bc'.d)oquoX.Y]'

X b
€Can you cnoose a, b, ¢, and d to make U and V independent standard normala?

(a) ¥(0, u? + [1-u}?) R

{b) E[Z] s 0 and var(z]) = 2/3 using Theorem 7 of Chapter IV, page 159.

(c¢) This is starred because the answer is not simple. Use Remark on page 149 and get
Fy(2) lfl’[Zslem]fu(u)du; now

both P[2s5z|Usu) and fu(u) are known and the problem is reduced to one of

lntegration.

€.( 1 z 1l
2z z) = ¢ ) du
° ATe(1-0)? ) A%(1-0)?

CHlAPTER VI

Chapter VI PROBLEMS

3.

b

5S¢

(a)
(b)
(a)

(b)
{a)
{b)

(c)

(a)

(b)
(a)

«(b)

. 1 :
P[Ixz-xl!<1/z] - jo PLIXy = wyl<1/22ax, = asu.
PlL/y < (X, +X,)/2 <3/M) -99[1/2 < X0x) < 3/2) = I, )

f { seaey a O ny l=x
Xpoenni¥y x) x) & ((273)71173) 1‘(o 1N

u 9‘.
iy (0 (5) 2a®asa Houa,enn,0)(®

£x 1 = 23, £15%) = 25,
Yes; it follows from slople algebra.
There ars various uly.l to proceed. For example,
var(5%] = (1/2n(n-1)7? varlrL(x -xj)’]
= [1/2n(n-1))? 11z covl (X~ 1’ v Orx?)

(using "varlance of a sua is the double sum of the covarlances®)
* [1/2n(n-1) 1 (2n(n- ~varl (X=X 3?3 + un(n-1)(a- ~2deovl(X,-x), (x,-x,)73)
® [1/2n(n- l)] (2n(n-1)(2p ﬂo“)vkn(n 1}(n-2)(p -o"”
= Wm, - 2,
cov[X,ﬁ ] = cov[X-u 57] a (1/n(n- l)lcovft(xk-u) E(X -p) -(lln)[[(l -D)(!j
{1/n(n- l)l(ttcov[(xk-u) (x -u) e (l/n)t:tcov[(x M), (X‘!-u)(xj-u)lh
[lln(n-l)]lnuJ - (1/n)(nua)l ; :‘i,n'r. rather sizple ansver.

. (1/2){~7 ¢ (- 1)( 2)} ;
For r ;ddx M. & 0 and hence {{n Y= D and \urtlt 1w 0. rorr eves,
» (12
L ( 7 + and Z[n 1= {1/2") : (Ju v j{—ll‘ ™3 4na similarly for
var[Hr].
SLOMITX-1)" & (1/n)t FLOx -ty ey,
r

Have P[-¢ « X =W <el21-4 forn>»alydy,
Here y = .5, 0? = 1/u, ¢ n .}, 4 » <1; hence n = 250,

Use the central limit theorem.

<90 = PL.4 < X < .6] s #(82s5y 4o )
- -——— d ~68.
Jllkn /1/4n mesen
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17.

18.

| 2%

CHAPTER V1

A A il - i2 Is approaimately distributed as a norsal distribution with mean = 0

and varlance 20%/n. Waat P[|i1-§2| >0]a . 0l. o= 1k,
2200 - 7?50)

Want .01 = P(X < 2200) &7 ¢( n = 136.
g 250//n
Want .95 = P[|X-y}s.2501. n = 62.
Want .01 = P[ X < 1/2) s o(——Liliél———). n = 3375,
7.52(.48)/n

(a) There are ten aqually likely (unordered) samples; compute x for each and

then evaluate §[X] and var[X). 3 and .75.
(b) 1
(e) LX) = (Ned)/2.

var{X) » (1/0%) var(fx1 s

2

(3/n°){tvar{X,} ¢ L Lcov(X, X )=

v Yoy %

(1/0%){nos n(n-l)cov[xl,leja

(lln?)(noz'n(n—l)l Li-u)(-u)/N(N-1))a
1]

g_z_ H-n
n

l

=
~

A [(X‘-)_() Jalls chl-square distributed with n - 1 degrees of freedoa.
S e TG L LU BTG (/2D =

~r— [~ 1 (n-1)/2_(n/2)-1 _-(1/2)z .

04/(n 1)]0 ﬂm (1/2) z ] dz

[(0/2)//n-13F(n/2)/T((n-1)/2). varl$) = 5[.{2] - ‘2[ﬂ O

o? 2 2 2 frin/2)
PR A I A PRl Gy 1 ¢ Co9 Y22)
(b) X = (U/m)/(V/n) lmplies 1/X = (V/n)/(U/R).
. U/a
(c) W= PSR . U Is bata distributed with ameters m/2 and n/2 b
ﬂ VeU ata s par y
n V/n

Example 25 of Chapter V.

)(n/2)-2

3 1
(d) {[X] » 2‘[1‘_‘—“] s Em[ u.lz(.l.-u dw = n/(n-2).
* 0

Simllarly for C(x’] and var(X].

19. (a)
)
4
(c)
(a)
Problens

practice

22. (a)

(b)
(c)
(a)
(e}

CHAPTCR VI 2

The integral tThal definea the mean exists fos degreen of freesdoa yrescar

than 1; symoetry shows that then the mean {3 zero. The integral that

defines the varlance exists for degrees of freadom greater than 2;

2 (standard normal r.v.)?
var(T) = {171 = t[chl.-squa‘e r.v./d.of f.] ¢

£(r-dist'd r.v. with 1 and k d. of £.] » k/(k-2) for k > 2.

If it seems unfair to use results on the F dlstribution to obtain
results on the t distribution, g['l"] can be found dirsctly. For

-cm;h. the standard normal r.v. of the numerator Is Independent of

i

the chi-square r.v. in the dencainator so the expectation can be factcred .oto

the product of the expectation of the square of a standard norwal
r.v. and the expectation of ths reciprocal of a chi-square r.v.
divided by degrees of freedom; both factora are known.
show c)[2/(Lee? ) (M2 —p S
Assuaing that the conatant part C(k) does what it has to do, It s
easy to_ show
(o 2otz mtoe?
X » 2/A/K implies X2 = 276/): vhich is a ratio of two {ndependent chl.-
squared distributed r.v.'s dlvided by their respective degrees of frae-
dom, hence )(2 ia F-distributed with one and k degrees of freedoa.
According to part (c), x2~ F(1l,k); according to part (b) of Problem .3,

0 k|
1/!2~!‘(k.1); and according to part (c) of Problem 18, E AL AR

WA e
is beta distributed with parameters k/2 and 1/2.

20 through 24 lnclu‘slvc are much alike and are Intended to glve some
in utllizing the results of Sec. 4.

Chi-square with n-2 degreas of freedom. (The aun of Independent chl-
squars distributed r.v.'s ls chi-square distributed with degrees of
freedoa equal to tha sum of the {ndividual degrees of freedom.)
Normal with mean y and variance 1.02/uk{n-k).

Chil-square vith one degree of freedom.

F diatribution with k-1 and n-k-1 degrees of freadca.

t-dlstributlon with n-1 degrees of freedoa.
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CHAPTER VI
2). Don't forget that z1 * 22 and z2 - Zl are indepandent! Similarly for X, + %

1 ?

and x2 - xl.

(b) t-distribution with 2 degrees of freedom.

(c) Chi-square with 3 degrees of froedon.

(d) F distribution with 1 and 1 degreas of frecdoa.

25. MNote that X‘l and X2 are {ndependent and identically distrlbuted chi-square

3.
random variables with 2 degrees of freedom, so X /Xy has an'F distribution '
vith 2 and 2 degrees of fresdom.
2. UnJN(u.l/E(l/o;))
v I(XL-U)Q/ui = :(Xl-u)aloi - (U-u)zt(llog) which is a difference of two 38,
independent chi-square distributed r.v.'s, the first with o degrees of free-
doa, the second with 1 degres of freedom. The result follows using the morent ) 2.

generating functlon techaique. What result does this reduca to if all o; are
vqual? .

73. The Joint distribution of (i.‘fz,sg) is easily obtalned since they are inca-
pendent. Make a transforwation and integrate out the unwanted variabla.

30. One could use Th.eomn 13, On the other hand, note that 72 - \’1 = ]Xl = le
and the distribution of xl - x2 is known and it is on-} to find the distri-
bution of the absolute value of a random variable.

3. (a) 1 - P(both less than median] s 3/u4.

(b) 1 - Plall are less than median] = 1 - (1/2)",

2. ZIT(YI)] is wanted. r(Y%) has the same distributlon as the smallest oLsar- )
vation of a random sanple of size n from a uniform distribution over the
Interval (0,1).

3. :[11] * ¥ - [(0-1)/(ne1))/T o
{[Yn] sy ¢ [(n-1)/(ne1))/3 0
var(;] « var(Y ] = 1202 0/0(ne1)?(n42)).

cov[!l.Yn] a 12017[(n01)2(n'2)].

29
CHAPTCR V1

() Ly, -v1= ((n-1)/(ne1)1273 0.

verlY, Y]« 2ue2(n-1)/L(n+2) (ne2) 3.
n

(b) {((vl'vn)lzl sy,

var[(YlQYn)/2] s 602/[(n11)(n12)])

(¢) ‘['koll .y,

2/(3x43).
var[Yk'll = 304/(
302 2 6al

” - for n > 2.
(@ 575727 72 W)

ance 28%/n.
X is asymptotically normally alstributed with mean o and vari

an o and
The sample medlan is asymptotically normally distributad with me

: 1ler
variance 82/n by Theorem l4. HNote that the sample median has the sza

asymptotic variance. )])n
- - 1-b y-a -
P((Yn-an)/bn <yl P[Yn < bnytln] = {1 -xp[Gbny ln)/( oy %n
) (-¢"Y) results.
[liﬁlﬂilll_ 1) . MNow lat n + = and exp(-e
{1 - exp y-Tog n
(a) Similar to Problem 34.
9.
(b) With 8 replacing A choose a and h“ as In Example

(m) that is exponential with
(c) We knot that Yl has exact distribution '

(Il) )
- a)/d
paramater nh. So choose a 5 0 and b ® 1/n and then (Y1 RILH

tlal
has exact (and hence also llmiting) distridbution that is exponan

with parameter A.
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Chapter VII PROBLEMS

1.

2.

LS

7.

9.

10.

11.

12.

Let B » number of black balls and
¥ = puaber of white Lalls.
R = B/H. Set p = B/(Be¥), so R = p/(1-p).
(a) Lat X, = 1 if black ball on i™ Grav and X, = 0 otherwise. HLE of
peix/ns % which implles MLE of R = X/(1-X).
(b) X, has geontrl'c distributfon. L{p) = pn(l-p)“l. MLE of p = 1/(2eK), 3°
MLE of R = 1/X.
HLE of p“ is N”/n.

llu:oful-uzhxx-xz.

Vu‘(il-iz] = (oi/nl)ngluz. nlwn[oll(almz)].

MLE of a ()-(1 + iz +*X, . X,/
MLE of b = (il + iz - ia - i“)/u; and
MLE of c = (?1 ’ i3 - Yz - i“)/'h
r'Lat ¥ dqnol’.o’the radius of the circle. Let X‘ denote the lth measuresent .
xl «pr e !:1 whers 2‘ is lth error of measurement. EINN(O.Gz). Now
va.r[xi] " vnr[tll = o.z acas2 a t(xl-i)zl(n-l) 1s an unbiased estimator of
e?. (l/n)jil(xi-SQ) is an unbiased estimator of the area a we?,
Show that Patltxloxz)jz-al < |%;-811> 1/2 for a11 8. Make the tranaformation
U, " X,-0 and U, » X,-8 and it suffices to show that P(IUL'U,I < 2]y 1) > /2
where U, U, is a random sample of size two from the Cauchy density 1/9(1ea?).
See Problem 20 of Chapter IV,
(a) !(Xl - é) s 0 impliea é = X.
() (X, - & 1a aininized for = X.
(b) varlax,] = o®(fa) = a2if(a;-1/n)? ¢ Ln).
(b) MLE of # is min{1/2,X].

—————
e m e ae e ————— - ——

o —————— i — — e — & = — =
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CHAPTER VI1I f (b) -nnxl is coaplete minimal gufficicat by Theorem 9. A minlmal sufficiene

utathtlé must be a functlon of every other sufficlent statistic. -I &a l‘
17. (a) X is sufficient.. £[X] = O for all 0 so X is not coaplete.
is not a function of :xl. hence le is not sufficlent for = » 1. I:Xl is
(b) Yes; yas.

sufficient for n = 1. Why?
(c) le’.lln.

(d) TYes. (a) 7Yes. (c) Yes, 1/0 .
) |x|.

18. (b) Yes.

(4) -Ilnxlln is UMVUT of 1/8; (n-l)l-l:!n)(‘i is UHVUE of 0. )t1 is an unblaned
. estimatar of 8/(1+9), hence ‘[lll-unx‘] is UNVUE of 6/(%¢1). Torn > L,

following a procedurs similar to that in Example 35, the conditlon dia-
19. (c) HMiddle cbservaticn for odd sample size and anything between two middle

! tridbution of xl glven -tlnXL can ba found and then the condlilonal axpec-
. observations for even sample slze.
? tation can be obtalned. Let S = -IlnX,, then Lix |5-|] s {x (n-1)
"(d) Me. e i 1 o5l
L n-2 n-lyy (n-1de n-2 Y44 which can be Irtegrated
1. In computing the means and mean-squared errors use the calculations in (o m‘l) /l‘l' ] n s .“'1 0 voea ¢ ¢ grate

Problem 33 of Chapter VI. and tha answer expressed as a finite sum. Tor m = 1, what {s the

(a) T, = 2% KSE 1s #2/3n, UHVUE of 8/(140)7
(b) T, = Y. KSE ls 20%/[(n+1)(n+2)]. ) 26. (a) 2X-1. Hean is 8 and mean-aquared error s (8%-1)/3n.
(c) L [(1;02)/(n01)h'n. MSE s O’I(ml)z. ’ 4 (b) HLE ia Y. The distribution of L is glven by P[Yn'j] s [(3/!)“ -
(d) T, * [(n'l)/nlfn. MSE in #3/[n(n+2)]. ((3-1)/6)"] lll.....ll(j) from which the mean and mean-squared arror
(e) MSC is 282/(nel)(n+2). can be found.
. (g) 7:/12. . Y Is sufficlent by tha factorization criterfon. To show that
22, (a) [(1-20)’0(1-0)]/:: {otzun)] 20 for 0 s 1, 2, 3,... implies that x(§) = 0 for § v 1, 2,....
(b) I[X {3 a complete sufficlent statiatic. Sz . I(Xfi)’/(n-.l) is an it suffices to substitute in 0 = 1, 2, 3, etc. successively.

unbiased estimator of 0(1-8), since the sample varlance Is an unbiasecd
estimator of the population varlance; furtherwore, 32 = [txi-n?]lfn-l) »

2 N
[!Xl-ni J/(n-1) i3 a function of IX;; hence, by tha Lehmann Scheffé Theorem,

S5? La UIE of 8(1-8).

an, -ux‘ has sn exponential dlstribution, soc —I:.l.nxi has a gamma diatribution.

(a)

MWE of § s n/-[lnxl. <o HLE of u is n/(n-llnxl)-

By the Lehmann-Scheffé Theorem and part (c) it suffices to show that

the glven atatistic Is unblased.

X {s sufficlent but not caomplets.
t(8) = medfan ® tn2/0. Wa already know the MLE and UNVUE of 1/8; to find

the HLE and UHVUE of t1(0) requires a simple acale adjustment.

2

) x*-1 .

I(o,-)("x) .

o —— —— - — | g ——— . i e el e e s e et g
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CHAPTER Vi1

(d) o(%).

o) - (1/n).

() X |R~ANE, (a-2)/0) and Llr, ()3 e oﬁ/n'_‘-l (X)) 1a uVUE of P(x > 0).

1(0.1)(X1) is an unblased astimator of (1)e”2, See Example 34 for a proce-

dure that will work to flad an UHVUE of (l+i)e™?

This {s a "triangular® denalty rather than a "rectangular” density as in

Problem 21. The results are quite similar.

The density given in this problem is a form of the Pareto desntiy.

This

problem is 1{ke Problem 2%. 1In that problea -lnxx has an exponential .

distribution; In this problea zn(z’xx) has an exponential distribution,

(a) (1eX)/X.
(b) MLE of 1/0 ls Iln(lfxl)/n.

(c) Iin(ltxl).

(d) 1/ne?
(o) tln(lox1)/n.
(f) (n-l)/lln(lox‘).

(a) la:[-'l.ln]. or,.the absolute value of the obaervation farthest

from tero.

(b) X is not minimal sufficent since IXI is sufficlent. X is not complete.

(a) le 1s & complete sufficient statistic and the sample variance is an

unblased estlmator so an UMVUE exists.

(a) IX‘

(b) Find it by using the form glven In Equation (16).

X has an exponential distributlon vith parameter ce. See Problems 24 and

32 for similar problema.

(£) The given statistic s a function of the complete sufficient statistics ;.'li

vhich has & grama distribution. Verify that the given atatistic is unblasec.

39.

40,

§l.

“2.

43.

N,

E 1)
CHAPTER VII

This is a generallzation of Problems 21 and 3},

s -
(a) a(8) = E{. h(n)du]'1 50 a(8) Is non-increasing. The likellhood tunctica
- )

{s proportional to a"(s) for 0 » Yn. NLE of & is Yn.

{(b) Y . See Uxumplo 33 for the Idea of the completenasa pnﬂol.
[
¢ is the mean and varlance. ]
/
2
(a) Ixg .

(b) It 1s not a function of a complete sufficlent atatistic.
(c) ¥o.
® should have bLeen assumed positive. Then § ls the mean and standard deviation,
and {s a scala parameter.
(a) Y. /2.
n+l n+l

b) to, C[anl Yn " ne2 11] * 0.

-n-1 -n-1
(ne2)[Y) - (v /) b

-n-2
1

(c) =
€ n 2]

(ned)[Y - (1“12)

@ (v, v x)/3.

(a) £x] ia complete and sufficient. IX{/n is UNVUE of 2,

(b) c* = 1/(n+2) mininizes HSC In fanlly of estimators of form cIX}.
(c) Tn/2)/IXT/L/2 T((ne1)/2)).

(e) Yes, since both are scale invariant.

(a) ¥
(b) Y
(¢) X-1
(a) v
(e) Yl - (1/n).

(£) Yl - (1/n).

.(n_l)h[Yl = 1/(n-1)] r 1/{n-1)

.(n-l)Yl -1

(g)

e

e —— e g —— =R
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CHAPTER VII

The ¢ in the {ndlcator function should be 0.
{a) Posterior distributlon of © <
" expl(e-1) logﬂlllir-;c-a.. hence it ls gamma (ner, A-I log x‘).
(b) Hean of posterior is (n+r)/(A-L logx‘).
Similar to Cxample N5,
(f) Similar, but slightly more tedius, to Exampla 46.
See the last paragraph {n Section 7.2.
This problem is similar to several others and makes a good review question.
Recall that the sus of geomstric distributed r.v.'s have negative bincafal
dlstribution. Sea Problea 21 in Chapter V.
(g) o » P{X=0], so x(o)(xl) 1s an unblased estimator, and
:“(o)“‘x”"x] {s UMVUE. ’
(h) posterior dlstrlbutlonc‘:on(l-a);nll(o.l)(o), hence posterior is P
bata (ntl, Ix£¢1). o
The middle 8 should be 1/8. The factorization criterion shows that Y,
and IX are jointly sufficienc., Y, and :(xl-rl) ara one-to-ona functlonn
of 71 and tx* and hence are also sufflcient and so Y, and :(xl-vl) are
sufficient and complete. Now {IYl] = a + (8/n) and S[I(xl-Yl)] = (n-1)B, 8o
Lx;-Y,)/(n-1) 1s VUL of 8 and ¥, - (z(x;-Y,)/n(n-1)] is UNVUE of a.
(a) Tactorizatiocn criterion gives (IXL. Yl)’
(b) LL8,aix serurx ) = (1-0)" "™ 8™ for 0 ¢ 6 <l anda = ¥y
v - 1, Y, - 2,... o It is monotone increasing in a for each 8, hence
HLE of a 1s T, and HLE of 8 ls (X-¥)/(X-Y +1).
Plcture the likelihood function, Between any two consecutive order statistics,
the likelihood function ls “cusp® shaped. It can be concluded that the maximua
of the 1lkelihood functloa occurs at an order statistic, plck that order

atatistic that saximizes L(,j) for § ® 1,...,0.

Chapter VIII

‘3.

2.

&,
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CHAPTER VIII

PROBLEMS

(a) Q= -8 log X has an exponential distribution with paraseter onme.
(b) PlY/2 <8 <Y)= .'H - -'1. Using the plvotal quantity given ln part {a:
r[qlt < § < qzv] is obtainsd. There are two ways of proceeding to

£ind a Letter confidance intervali the ¢irst is to choose q, and g, s0
that the confidence interval has confldance coefficlent o-h - n.l
and minluus expected length, and the second ia to choose q, and q,
so that the confidance interval has expected length = (1/2 L Lr] and
maxioum confidence coeffliclient.

a = (-18%70.

B(T, < 1(0) < T, = BT < x(0)1 + Plx(0) < T,) - BLT, < 1(0) or t(8) <« T,)

sye+ty-1. .
As In Probles 3, P[Y, <0 <Y ] PlY, < ¥+ PO <Y )-1¢" (-0 ¢ [2-0
. 1. 0™k

(a) Q= 0Ix; Is a pivetal quantity.

(b) Use part (a) and the Remark on Page 178.

(c) ¥

(d) Sea part (b),

(e) nmey,.

Similar to Problem l.

(a) y » 1/2. (Ses the solution to Problem 4.) Sty,-vd 'l”":"';“ .
2//% 291.1204

(b) Have Plq, < %-8 < q,] = 1/2. Choose q; and q, eymetric about zero;
axpacted length £J.95.

(a) Usa Q = /n(k-u)/o as your plvotal quantity.

(b) Use Q= :(xl - 4¥)?%/a? as your plvotal quantity.
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CHAPTER VIII

(-2.09, 2.84) for o known and (-1.9%, 2.69) for 0 unknown.

(b) Use X - 2.645J.
5 D’

the Q= ¢ I (x
izl 3§=x)

vith 23 degrees of freedoa.

G(x‘-i)’/ogjﬁn-u

”-i‘.)zlaa 8s your pivotal quantity. Q~~chl-square

Use =
({(Yl-h?/o’)/(n-l)

Want P(2t§//20 < 0] where t i3 the (1-v)/2 the

~F(=-1,n-1) as a pivotal quantlity,

Quantile of a t-diatribution
-wlth 19 degrees of freedom. Write P[2t5//20 < 0] = I’[(ls)&zlaz < 19(20)/'4:2].
where (19)52/02 is chi-square distributed with 19 degrees of freedoa, to
complete the calculations for any y.

(a) 220//o uhere z is the (147)/2 quantile of a standard normal.

(b) 2¢(S)//n where t is the (1¢y)/2 quantile of a t-distribution with n-1

degrees bf freedom. See Problem 17 of Chapter VI fcre[.s].

Want P(2tS//n < 0/5] .95 where t ls .95th quantile of a t-distribution

with n-1 degrees of freedom. Rewrite as I’[(n-l)s?lo2 < (n-l)n/lOOt’].
Want the miniaum o sucn that (n-1)n 2 l.l)ot2

2 ]
.95,n-1%.95,n-1* B & little
ovar 300 seems to work. )

Use Equation (10). (1.47, 10.03)

The first "the” should be "a”, Use Q = -I 1ogr(x1;o) = -(1/6)I log Xi as
4 pivotal quantity.

Uss the statistical mathod and l:)(‘l as a statlstic.
(“1 * 12)17] - 0 i3 a good pivotal quantity.

The sanple slze 3eecms large enough to use Equation (18) of Example 8.

4375 ¢ .0408 for 90%.

The UMVUL of t(0) Ls a linear function of X and S. & and S are independent and

have large pample normal distrlbutions. Hence the large sample distribution of

the UXVUE (or HLE) of 1(8) s normally distributed. Use this to get an approximate

oonfldence Intreval.

26,

a7.

28.

39
CHAPTER VIII

Sim{lar to Example 9.

The posterior distribution is glven In the solution of Praoblem 45 of Chapter VII.

Use it and Equatlion 21.

The likellhood function 1s the joint dhtrl.buti:n of 11"""]& looked ax as
K oYy

nl -0y, {n-Xx)
a function of 8. L(e;yl,....yk) * ot 0e e ’k
k

for Y SV 8 8y, -
MLE of 1/8 ias [EYj * (n—k)Yk]/k. Lex U, = Y‘ =Y U1~nqn1u exponentlal
with p'u‘anetcr 8(n-1+1) using .tho lack of ememory property of exponentially
.distributed random variables. 0(n-lol)U1~ negative exponential with paremeter 1.
LY, ¢ (n-k)Yk LR R PR FALIETTIL L W (n-keldy, =

Uy + (U;v0)) ¢ (U e000,) ¢+ oot v (n-k'l)(ulv...ouk) -

k
nU1 + (n-l)sz...f(n-kol)Uk . jzlln-j'l)uj. Also,
k .
G(IY‘ + (n-k)Yk) . { o(n-jt.l)uj, which {s a sum of k Independent negative
- .1

exponentlally distributed r.v.'s with parameter 1. Use Q= O(IY‘ v (n-R)Y Ve

* gasma (k,1) as a pivotal quantity.

o Sl
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Chapter 1X  PROBLEMS

1. (.)

(b)

(c)

(4)

2. (a)

(d)
(c)
(d)
4o
(f)

8. (o)
(f)
s. (a)

(b)
(e)

10
(1) Bgde) = g (‘a ol 1-niod
(11) 13(2/2) 9 .377
(1) Cx* ((ul.....xm): I‘i < 2)
(11) Bg(1/8)5=.53

(1) vantR(e)) =R(e)). Reject for IX, 5 & does ir.

(11) maximum risk for ainlmax =85
paximum risk for M.P.az815

Reject for :xl < N,

nee) » 1 - (3/w)° + 8(3/%)® 103(3/4).

slze = 1/4 ¢ (3/4) 1og(3/4)

Reject If and only if xlxz 2 1/2.

Yea

Reject Lf and only If Xlx2 > 1/2

Reject £ and only {f OX, > 172",

This ls equivalent to finding the minimax test with t(d;:0,) *
l(dlgoo) = 1. Reject Lf and only if xlxz ¢ k where X is solution
to 1-k¢k log k = k’-?kz log k.

Rajesct for X < k where k is such that a ¢ 8 = kz ¢+ (1-k) 1s
sinimized; f.e., k = 1/2.

After some manipulation the test reduces to: reject for X log X < k
where k is such that Paal[Xl“x < k] = a. Note that this test does
say to reject for "large" and “sna{l" x which is intuitively appealing.
Reject if and only if X > 1 - a.

n(e) = P[x»>1/2) = 1/2 + (1/4)0. Size Is 1/2.

Yes. Have monotone likelihood ratio in X. Test is: reject féf x> 1L - a.




2

10.

11.

12.

(d)

(o)
(a)

(a)

(a)

)

(a)

()

(a)
(d)
(c)

CHAPTLR IX

Reject 1f and only Lf [X - 1/2]| > o where c {s such that
PeeollX-2/2]>¢] = @; f.0., a = (2-a)/2,

@ v P, JL0k] ¢ P IXk) % 1= k¢ k? which s a minimun for k = 1/2.
D(e) = 1 - P.[uoa1/° SY 30 I(o.aouifn)‘°’ + ale /0)"r
Q- (1-«)(0010)"11(.0._)(0).

Reject If and only if -IL > 2 2
jec an y ogX (60/2“2n,1-u where X2n,1-a is the
(l1-a)-quantile of & chi-squara distrlbution with 2n 'dcgrou of

freadom,

BEO = P x21) = (/D110 () ¢ [-Gr2e), o).

Size of test = 0(1) s 1/2.
UNP size @ ® 1/2 test i» glven by: reject {ff Yz 2 1//2. Power of
UMP test ls [1-(1/202)11(1/'/—._)(0). which {s identical to the power of
the given test for 0 » 1. Note that the test in part (b) is based on a
sufficlent statistic and the test in part (a) is pot.

0(e) = 1 - (1e0)e”?

Raject if and only if !1 < 2 log 2.

K » 1_.1ln

Lav1-1-0™M (g | Ji/ny (000 X\ i/n _)(8)

Haybe this part should have been starred. To prove {t, find the most
poverful size o test of 070 versus 8 » 8) where 0 <5, <1 (1f 8, > 1
you can tall with certainty which hypothesis Is true.) It turns out that

the power undnr the alternative 8 = ..L ia the same as the power of the

given test, so the given test must be uniformly most powerful.

[°0°l/n'°o](.) +

13.

pLN

18,

16.
Prod
from

17.

22,

24,

25.

0.

L P ]
CHAPTER 1X

(a)

LIS,

: ][(l'n)/(-llogll-tlogfj)3-1
-tlog)(‘ -l'.]ong

atn
) [cup(tlog!‘ﬂlogfj)

n n
n n [n/-TlogX,)-1 (t
:mﬁ;) (m (cup([logxl)) 17 "{exp

a n
. -Tlog¥
(“n)mn [lv::gxl Llog 3
® ~TlogX, -TlogY, “TTogX -TlogY,

® N
B0
(b) Test is of form reject HO 1f and only if ™(1-1)" < constant.

(e) T has a beta distribution with parametera m and n and does not depend

on the comaon value of l1 and 02 under }{0. (Sea Cxample 25 of Chapter V)

See Exampla 11. How does the answer change if you test #0:0-1 veraus
Hper 1

This !s & good review or test question. The denaity {a the same as the
denaltles of Problems 2 and 4 with a slight reparameterization.

See Problem 13.

lems 17 through 35 cover materlal allled to that of Section 4 on sampling
the normal distribution.
Let Dy = X"~ Y,. bex

interval for y

““)nv/tinl—ﬂsz?ln-lin {3 y-level confldence

x " Yy Use teat: Reject J’O {f and only if the confidence

intervel doen nal coutaln zer0o. Tautl hian afze a v ) - y.

ch 2 ((xl,....un)l le Pt ﬁn + nazzul. .

Use test: reject ,(0: wau Lf and only {f X > k where v, ¢ k < My

[4]

k-p -
azP [X>»Kk1=21-4¢ —oOun-—o-undB-Pu(X¢k]-
Yo a/fn 1
k-u
1
-0 a3 N~—e =
.(5//5

Use test based on statistic given In Equation (18).

Could use Theores 7. -2 logh FI4.14 < xﬁgg(z) = 9.2}

logY’)][n’.no"j 31

e —— —— e — | ———————— AT W =t W o4&
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3 X eeeeXy s from N (ul.a’)

XyyoreosXy, ve8. from N(uk.az)

XD: u1 = uy LIRS = 0. A reduces to

zt(le-ij,)2 T TR
- 2—1— ; so the GLR teat ls equivalent to: reject.
(=, ,-x, )
j‘ j' =g
Illj‘/k
ﬂo if and only Lf T = = is "large". Underfo.
::{le-x!.) /x(n-1)

T is F-distributed with k and k(n-1) degrees of freedow.

) 2 42 4.
., L(ux.ll'.ox.o,!o.(ll.yl).....(xn.yn))"

20-97) 0,0 o2

I(x;-u,)? Llx,-u )y -u,) Iy -p)?
“;oz)nl? ol 1 2)( - 2 i XL X ' i X .
Ox Xy
o2

Y
The HMLE are ;x » X, ;' =y, o} * I(x —i)zln. ;2 = I(yl—i)aln. and

.p a I(n -x)(yl y)//ﬂ?-_l)_’w A reduces to (1- oz)"n. GLR test '
13 equivalent to: reject ”0 1f and only if lpl ils "large". Und.r}{o.
the distribution of p 1s free of parameters.

45 There are two cases depending on whether or not the common value for the
mean under the null hypothesis is known. The generalized likelihood ratio
technique gives a test uaing test statistic I[X -u)zla}] for u assumed known
and test -tathtlc V of Problen 27 of Chap(er Vvl for p assumed unknown.

29. (a) flQ) = { EB‘ [[(Nj-npj) 2], { -; npy(1- py) = ke

var{Q]) = I { “—P_L_j- cov[(N -npi) 4 (Nj-npj) J. Certain fourth .

ordar ccntrul moments of the I‘"l are ne;ded; these can be found
directly or by using the soment generating function. After some mani-

pulation, var{Q) reduces to 2% ¢ (lln)[t(llpj) - k% - uk - 11

4%0.

41.
2.

(15

46.
u7.
49.

&3,

L 1]
CHAPTER IX

®) fig) - kf: (llnp‘i)[npj(l-pi)m’(pj-p;)2]

.[[Q‘]l s k. The answer is no and can be verifled by proper

PyPy

cholces of pj and p‘;. One might try to ainimize f[Qt] with respect

to the pj’a using Lagrange multipllers and constralnt equatioa

ipi = 1; px = [(2n'k-l)p‘;-1]lz(n-1) results., Furthermore, such p;

will fall between zero and one for p‘; between 1/(2n-1¢k) and

(20-1)/(2n-14k).
Let p = proportion of headaches that are psychosomatic. ‘lut”oz p 2.
versus 1ﬁf p< .M Lat X =4 of psychosomatic headaches. ucjccxgﬂa for
small X. HModel by assuming X has a blnomial distribution with n = 81,
For P M, and X = 12.”0 would be accepted at the 5V laevel.
Yis. using results from Theorem 8.
Yes; see Example 21.
The 1ikelihood function is proportional to (p1)"(2p(1-p)I"2((1-p)7 12,
The MLE of p ls (2n1tn2)/2n ~4.335. Obtain 51. 52. and 53 and use test
statistic Qi. Accept that the data are consistent with the wmodel.
Yes.
Reject hypothesis.
To.t,{ : p” s Py P . Rejoctﬂ ,

Ky
Use Q. of Equation 30, HNote that it reduces to i —J—--j—— which
2K yo1 H”ﬂlu °

has value P&7.57 (2) = 5.99.

2
> X gs
Use approach siailar to Problem 45. It 1s somewhat more difficult to
got MLE of p, q, and r 5 1 - p - q. Compare the cosputed Qs statlstic
2
uith xl_“(l).

o e —
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51. (&) . Might use etatistic ) ] 1 = E] - } O]
. 1,3.k alNy Ry 7aRE /P

Certalnly, reject independence. 2
(Nljk'n("--k/n)(“lj-/n)]

n(H"k/n)(Hlj_Jn}

(b) MNight use statlstlc )

sd
$3. For a2 2,
PL A = 1/8) = 20py,p) * PgPy )
and
P(A = 1) = 2 - P(A = I/N].
- For n s ),
? 2 . 2 . 2 )
PLA « /271 = 3(p1 Py * PyyPyp * PrPay * PadPuy
POA » 16/27) = 6(p 1P 2Py * PuiPyaPa2 * PLiP2iP22 * P12P21P22’
and P[A = 1) » 1 - PLA «4/27) - P(A =16/27).
For o = 4, there sre five values for A.
S8, The exact lna asywmptotic distributions are the same.
59. Yes.
60. (a) n ® 16 vea CLT approximation
(b) Continue nunpll?g for

(nf10g2) - (logl3/log2) < Exl < (n/log2) + (log1971og2).

. (c) Snlples.

JuilR, 17,
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CHAPTER X

Chapter X PROBLEMS

Problems 1 through 6 are solved by uslng the given data and appropriate

formulas in Sectlons & and 3.

8.

10.

11.

12.

13.

18,

15.

Equations 7, 8, and 9.
See the Corollariss of Theorea 2,
Equatlona 15, 16, and k.

See Page 494,

Use the invarlance property; see Theorem 2 on Page 285,

Similar to Problem B below.
B.+8 x ¢z a-(B8 18 x_)
1*%1 %" % 0 "1 %
P[Y'o 28, ¢ ﬂlxo + zpo] s ¢ = s #(z ) = p.

.

- no 2.1/2
By v 8ue :p[r((n-Q)/2)//7r((n-1)/2)][£(y1'30~alll) 1.

5045-“97. 81952.0M9. a5 .00117, and v;r(illa¢~°0255- A 95\ confliencs

interval estimate for ’1 is (1.93, 2.17). Bl a1 is outslide this Interval,

s0 according to the confldence interval tachnique, the hypothesis ‘1 .1

wmay ba rejectad.

Similar to Problem 10.

Could set a ona-nided confidence interval on u(.50) and use the confidence

interval tachnique.

Use the invariance property of confldence intarvals. See the Resark on

Page 378.

= ;a2
“1‘“'“”“V1'“o'°1‘1)

. (:'1)(1'1xly1)'([‘1yl)(I'i'i)

ot

(“1)(I'1*§)'(r‘1‘1)2
8, " (hly1 - altll'L)/I.l' and

L tal(y1 - Bo- 51:1)2/n.

>
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CHAPTER X

18. fRecall that io and il have a bivarlate normal distribution.

required for independence in a bivariate normal?

17, covl¥,B R cov[i o bx LR 5 )= cov(!o.l lex var[l ] = 0 by Equation (12).

¥ and '1 have a bivariate normal distributlon so unoorrolated iaplies

independence.

Problems 19, 20, aod 21 can be worked using the theory of Lagrange sultipliers

as in tha proof of Theores 6.

it

CHAPTER XI

Chapter XI PROBLENS

S.

1Q.
11.

13.

2
cov[rn(ll).fn(lz)] s« (1/n )i g ccv[l‘l(xl). raztx DR (1/n)eov(1.1(x).x

i

(lln)(P[X;B B, ) - r[x:n )r[xcn 1.

(a) D, = max[U, 1-U) where U ia uniformly distributed over the {nterval

(c,1). Ty (n) = (210 1 v I, %)

(b) F 2(:) = 2(21 - \:) l“ ‘a)h) ¢ (1-2(1-2) ]l“ ”(l.) * l[1 _)

(c) D = :ax [ll‘“l) - Tl' ll‘(Y‘) - ;l). 0 D is a function of
sisn

F(Yx).....F(Yn) which are the order statistics froa a uniform over (0,1).

Q0v,) = Ly evy)/2) ¢ ELlx,-%,|/2] ® /DX -x, 11 1/ using the

fact that Xl - XZNN(O.Q).

Use the same start as in Problem 5, - X, ~oN(0,2(2-p)).

xl 2
Yes, sas Theorem 14 In Chaptaer VI.

5-15.

The data seemed to be rdqnd. you might be leary of the twvo-sanple sign test.

n m n
varful= § 1 I cov(I (x ) I (%))
331 lel p=l agj [Yj i [Yl. ) re

=m0 ur(I['._)(X)J (§s=sand ! =a)

+enm (rl)cov[lu _)(X ).I“ _)(xz)]

+o(n-1)m cc:v[ltY (X) I['l .)(X)]

(§ 8 and 1 #a)
(J#sand i=a)

+ zero (78 and i pa)
« w0 (P0X2¥] - P2LX2Y)}

+ 0@ (a-1)[PX 2¥,X2Y) - p2Cxzt1)

+ n(a-1) m{plxzY, ,X%2Y,] - P2[x2Y1)

= an (174) + = n (=-1){(1/3) - (1/4)) ¢+ = n (n-1){(1/3) - (1/4)).

= a o (ntntl)/12.

‘:(x)] ]

e s
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v
1

13.

16.

117.

a1, 8= 2glves PT s1) = PLT =2] = PLT =3] = 1/3.

»s1, ne3gives PIT *1] = P[T 2] = PLT »3] = PIT =4] = 1/%.

ae2,n0] glvas r[r‘-:] - r(r'-nl . r[t‘-s] s 1/3.

me3, 0n]l gives r[rl-s) - r(T_-1] - P[Tl-l] . r[riasl = 1/u.
men=2gives '(T-‘3] = r[r‘-u] " r[rn-s] = r[rx-1)_- 1/6 and P[T'-S] = 2/6.

U/en is an unblased estimator of p. The second question should read:

ls U/en a conslstent estimator of p? The anawar {a yas as can be noted

by looking at the interwedlate steps in the solution of Problem 13 and letting

a and n approach fnfinlty.

(a) Just algebra noting tiat r(X) ® ©(Y) = (n+l)/2 and :r’(x‘) = trz(l‘) »
117 = nlae1)(zne1)/6.

(b) S = .9 and the ordlnary correlation coefflclent 24.962.

The ranks of xl.....xn are the same as the ‘I‘l\kl of rx(xl).....rx(xn).

Likewise for the 'j"' By the probablility integral transfors the distri-

bution of r‘(xl).....rx(xn) does not depend oa l‘x(°)~. likewise for the Yj'c.

Heoce, the distribution of § (which s a functlon only of the ranks of
Fy(8))--+ay(X,) and the ranks of Fy(1))eercoTy(T,)) will not depend on "
T 0-) and £ ().

ZLs) = 1-[6n/(n -n))c[n )

=1 - (6a/tn Lo’ (x)] - 2f(rlxdetr)] ¢ it (N

s ) - [6n/(n -n)]((lln)[l - 2(t1/n) ‘ (lln)tl )

s 0 using independence of r(X ) and r(Y ) and the fact that r()(l) and

r(Y ) have discrete uniform dlstributions.
var(s) * (36/(a%-n) )tlcov[nl, nj) e [36/(n-n)(n var(p3) ¢ n(n-1) cov(03, 031} *
s {368/(n -n)txngxn ]- nq;[n n e n(n-x){to n 1- n(n-xagxn ]:[n 1)
= (36/(n ia? )(n i 5(1 " (1/a?) ¢ n(n-1)f 5 ot a;j(‘ 3 2(a-8) 2(1/n? (s-1)%)
-n[§§Ud)(un)])
s 1/(n-1).




