4 SEM TDC PHYH (CBCS) C 9

2024

(May/June)

PHYSICS

(Core)

Paper: C-9

(Elements of Modern Physics)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option :

 $1 \times 5 = 5$

- (a) The minimum energy required to remove an electron from the surface of a given metal is called
 - (i) stopping potential
 - (ii) work function
 - (iii) kinetic energy
 - (iv) None of the above

(b)	Electrons cannot exist within the nuclei	2. Answer the following quest		wer the following questions: 2×5
	of atoms is understood from		(a)	State and write the mathematical
والان	(i) Heisenberg's uncertainty principle			expression for Planck's law of blackbody
	(ii) de Broglie's hypothesis			radiation.
	(iii) Bohr's atomic model		(b)	How can we determine the time of
- AV	(iv) None of the above			existence and range of a virtual particle
(c)	The total probability of finding a particle must be			using Heisenberg's uncertainty principle?
	(i) infinity		(c)	Briefly discuss the linear superposition principle.
	(ii) unity (iii) zero		(d)	Define and write the mathematical
	(iv) None of the above			expression for the binding energy of a nucleus.
(d)	Which of the following is true for nuclear force?		(e)	How did Pauli predict the emission of a neutrino from a nucleus?
	(i) They obey the inverse square law of			and the second second second
	distance	3.	(a)	Explain why it is impossible for an
	(ii) They are short range force			electron to be present inside the nucleus of an atom.
	(iii) They are electromagnetic force			
	(iv) They are dependent of nature of charges		(b)	Briefly discuss the process of nuclear fission with examples.
(e)	Which of the following is used as a		(c)	Briefly discuss the creation of neutrino
	moderator in a nuclear reactor? (i) Plutonium			and antineutrino in the β -decay process with examples.
	(ii) Uranium			With examples.
	(iii) Cadmium	4.	(a)	Show that the half-life of a radioactive
	(iv) Heavy water			substance is inversely proportional to
	(ib) Heavy water			the decay constant.
/127	4	24D/	107	a (Turn O

3

3

3

4

2×5=10

Show that the	group	velocity	of a wave
packet is equal	to the	particle	velocity.

4

6

5

4

- (b) Briefly discuss the construction and working of an He-Ne laser.
- 5. (a) Briefly describe the confinement of a quantum dot in an infinitely rigid box. Find the value of N for the wave function of a particle of mass m moving along X-axis between $x = -\frac{\pi}{2}$ to $x = +\frac{\pi}{2}$ is given by $\psi = N \sin^2 x$.
 - (b) Explain Compton scattering and obtain an expression for the Compton shift.
 - (c) Explain the quantum mechanical tunnelling for a particle across a rectangular potential barrier and obtain the expression for transmission coefficient.
- **6.** Write a short note on any one of the following:
 - (a) Nuclear shell model
 - (b) Davisson-Germer experiment

**