4 SEM TDC PHYH (CBCS) C 10

2024

(May/June)

PHYSICS

(Core)

Paper: C-10

(Analog Systems and Applications)

Full Marks: 53
Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option :

 $1 \times 5 = 5$

- (a) The width of the depletion layer of a junction
 - (i) is independent of applied voltage
 - (ii) is increased under reverse bias
 - (iii) decreases with light doping
 - (iv) increases with heavy doping

- (b) The colour of the emitted light of LED depends on the
 - (i) construction method
 - (ii) applied voltage
 - (iii) energy gap of the material used
 - (iv) None of the above
 - (c) In RC coupled amplifier, voltage gain over mid-frequency range
 - (i) is increasing
 - (ii) is constant
 - (iii) is decreasing
 - (iv) is zero
 - (d) Oscillators employ
 - (i) negative feedback
 - (ii) no feedback
 - (iii) positive feedback
 - (iv) None of the above

- (e) Open-loop voltage gain of OP-AMP
 - (i) is small
 - (ii) is large
 - (iii) is zero
 - (iv) None of the above
- 2. (a) What happens to the depletion region of junction diode under forward and reverse bias condition? Explain.

Or

Define Fermi level in a semiconductor.

How does its position change when

(i) donor and (ii) acceptor are added to
the semiconductor?

1+1+1=3

(b) Derive an expression for the width of depletion layer of a p-n junction diode.

Or

Define the mobility of charge carriers and conductivity. What is the effect of temperature on the conductivity of a semiconductor? 3

Explain with circuit diagram the action

		of Zeller diode as a voltage regulator.	
	(b)	Write about working and construction of photovoltaic cell.	
4.	(a)	What do you mean by quiescent point or Q-point? What is the best position of Q-point on the DC load line in the transistor characteristics?	2
	(b)	Explain active region, saturation region and cut-off region in transistor operation.	3
		Or	
		The collector leakage current in a transistor is 300 μ A in CE arrangement. If the transistor is now connected in the CB arrangement, what will be the leakage current? Given $\beta = 100$.	
5.	(a)	Draw a circuit for voltage-divider bias method. What are its advantages and disadvantages? 1+2=	3
	(b)	Derive expression for the current gain and the voltage gain of a single-stage common-emitter transistor amplifier	

using h-parameters.

(c)	A CE transistor amplifier is connected	ed
(9)	with a load resistance $2 k\Omega$. If the	ıe
	h-parameters of the transistor as	re
	$h_{ie} = 1000 \Omega, \ h_{re} = 10^{-4}, \ h_{fe} = 100$ and	10
	$h_{oe} = 12 \times 10^{-6}$ S, find the current gain	n,
	input impedance and voltage gain.	

- 6. (a) Draw the circuit diagram of an RC coupled transistor amplifier and give its mid-frequency equivalent circuit. Derive an expression for gain at the mid-frequency range. 2+2=4
 - (b) What is non-linear distortion? How can it be minimized? 1+2=3
 - (c) Calculate the Barkhausen's criterion for self-sustained oscillations.

Or

An RC phase-shift oscillator has the parameter values $R_L=3\cdot 3~\mathrm{k}\Omega$, $R=5\cdot 6~\mathrm{k}\Omega$ and $C=0\cdot 01~\mathrm{\mu}F$. Calculate frequency of oscillations and the h_{fe} required for sustaining the oscillations.

3

3

3. (a)

7. (a) Draw the basic non-inverting amplifier with an input resistance R_1 and a feedback resistance R_f . Assuming the OP-AMP to be ideal, derive the expression for the voltage gain of the non-inverting amplifier. 1+3=4

Or

Calculate the CMRR of OP-AMP.

(b) Explain with circuit diagram of an OP-AMP as integrator.

Or

The input to the differentiator OP-AMP is a sinusoidal voltage of peak value 10 mV and frequency 2 kHz. Find the output, if $R = 200 \text{ k}\Omega$ and $C = 2 \mu\text{F}$.

(c) Explain the significance of virtual ground of a basic inverting amplifier. What do you understand by closed-loop and open-loop voltage gain of an OP-AMP?

Or

Consider the inverting OP-AMP with $R_1=10~{\rm k}\Omega$, $R_f=100~{\rm k}\Omega$, $V_{\rm in}=1~V_{\rm pp}$ and power supply voltages $\pm 18~{\rm V}$. Find (i) closed-loop voltage gain and (ii) the maximum operating frequency. The slew rate is $0.5~{\rm V}/{\rm \mu s}$.

8. Explain the working of a binary weighted-resistor network.

Or

3

Briefly describe the resolution (step size) and accuracy specifications of a D/A converter.

4

3