Total number of printed pages-4

1 SEM BCA (CBCS) MTH 1.2

2024

(December)

COMPUTER APPLICATION

Paper: 1.2

(Mathematics-I)

Full Marks : 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer the following :

 $2 \times 5 = 10$

- (a) Give one example of a set.
- (b) What is cardinality of a set?
- (c) If $A = \{1, 2, 3, 4\}$ and $B = \{2, 4, 6\}$, then find $A \cap B$.
- (d) Define transitive relation.
- (e) What is tautology?
- 2. Answer the following:
 - (a) If $A = \{1, 2\}$ and $B = \{3, 4\}$, find $A \times B$ and $B \times A$.

the state of the state of the state of

Contd.

- (b) Let a set X contain n elements. How many relations will there be on X?
- (c) Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. A relation R on X is defined as ${}_{x}R_{y}$ if and only if $x^{2} = y(x, y \in X)$. Find the elements, domain and range of R. 3
- (d) If a relation R on a set X is symmetric, show that R^{-1} is also symmetric.
- (e) Let $A = \{1, 2, 3, 4\}$. Determine whether the following relations are transitive: $R_1 = \{(1, 2), (2, 3), (1, 3), (3, 2)\}$ $R_2 = \{(2, 3), (3, 4), (2, 4), (3, 1), (2, 1)\}$ $1 \times 2 = 2$

3. Answer the following:

- (a) Define one-one function and onto function with example. 2+2=4
- (b) What is characteristic function?
- (c) Let R be a relation defined on a set of positive integers such that $\forall x, y \in Z^+$ $x^R y$ if and only if x-y is divisible by 3. Prove that R is an equivalence relation.

Or

(d) If R and S are equivalence relations on a set X, check whether $R \cup S$ is an equivalence relation on X.

4. Answer the following:

- (a) Form the conjunction of p and q for each of the following: 2
 - (i) p: Ram is healthyq: Ram is a good football player
 - (ii) p: It is cold q: It is raining
- (b) Find truth value to each of the following: 2
 - (i) $5 < 5 \lor 5 < 6$
 - (ii) $5 \times 4 = 21 \times 9 + 7 = 17$
- (c) Construct the truth table for the following proposition: 5

$$\sim (p \vee q) \vee (\sim p \wedge \sim q)$$

Or

- (d) Show that $p \rightarrow q \equiv q \rightarrow p$
- (e) Write the negation of the following proposition:

p: All students are intelligent

.

- 5. Answer the following:
 - (a) Briefly explain about modulus and argument of a complex number. 2
 - (b) Put the complex number $\left(\frac{2+i}{3-i}\right)^2$ in polar form.
 - (c) Expand the following determinant:

4

Or

Write the properties of determinant.

- (d) Define the following: (any three)

 2×3=6
 - (i) Row matrix
 - (ii) Null matrix
 - (iii) Diagonal matrix
 - (iv) Symmetric matrix
- (e) What is permutation? In how many ways can 6 students arrange themselves in a row if 2 particular students always sit together? 1+2=3