4 SEM FYUGP MINMTH4

2025

(June)

MATHEMATICS

O a land (Minor) and below

Paper: MINMTH4

(Algebra)

Full Marks: 60

Time: 2 hours

The figures in the margin indicate full marks for the questions

1. (a) সত্য নে অসত্য লিখা:

State True or False:

 (i) মেট্রিক্স প্ৰণৰ সাপেক্ষে নির্ণায়ক 1 হোৱা পৰিমেয় সংখ্যাৰ 2 × 2 মেট্রিক্সৰ সংহতিটো ক্রমবিনিমেয় গোট।

1

The set of all 2 × 2 matrices with determinant 1 with entries from Q is an Abelian group under matrix multiplication.

- (ii) সাধাৰণ পূৰণ প্ৰক্ৰিয়াৰ সাপেক্ষে $\{x^n-1=0\,|\,x\in C\}$ এটা গোট। 1 $\{x^n-1=0\,|\,x\in C\}$ is a group under multiplication.
- (b) Z_n ত j>0ৰ বাবে jৰ বিপৰীত কি হ'ব, লিখা। 1 Write the inverse of j in Z_n , j>0.
- (c) ক্রমবিনিমেয় গোটৰ সংজ্ঞা লিখা। 2

 Define an Abelian group.
- (d) দেবুওবা যে সাধাৰণ পূৰণ প্ৰক্ৰিয়াৰ বাবে ধণাত্মক অপৰিমেয় সংখ্যাৰ সংহতি S এটা গোট নহয়।

 Show that the set S of positive irrational numbers is not a group under usual multiplication composition on it.
- (e) প্ৰমাণ কৰা যে এটা গোটত একক মৌল জননা। 2
 Prove that identity element in a group is unique.
- (f) $GL(2, \mathbb{Z}_7)$ ত $\begin{bmatrix} 4 & 5 \\ 6 & 3 \end{bmatrix}$ ৰ বিপৰীত কি হ'ব? 3 Find the inverse of $\begin{bmatrix} 4 & 5 \\ 6 & 3 \end{bmatrix}$ in $GL(2, \mathbb{Z}_7)$.

- (g) প্রমাণ কৰা যে এটা গোট Gত

 Prove that in a group G $(abc)^{-1} = c^{-1}b^{-1}a^{-1} \forall a, b, c \in G$
- (h) প্রমাণ কৰা যে 'X₅' সাপেক্ষে সংহতি {1, 2, 3, 4} এটা গোট।
 Show that the set {1, 2, 3, 4} is a group with respect to 'X₅'.
- 2. (a) অখণ্ড সংখ্যাৰ সমষ্টি Z, বাস্তৱ সংখ্যাৰ যোগজ গোট পূৰ
 এটা উপগোট হয়নে?

 Is the set Z of integers a subgroup of the additive group Q?
 - (b) U(10) গোটৰ ক্ৰম কিমান ? Write the order of the group U(10).
 - (c) প্ৰমাণ কৰা যে গোট Gৰ কেন্দ্ৰ, Gৰ এটা উপগোট। 3

 Prove that centre of a group G is a subgroup of G.

P25/1440

(Turn Over)

1

3

(d) প্ৰমাণ কৰা যে G-ৰ অৰিক্ত উপসংহতি H উপগোট হোৱাৰ প্ৰয়োজনীয় পৰ্যাপ্ত চৰ্তটো হ'ল $a,\ b\in H\Rightarrow ab^{-1}\in H.$

6

Prove that a necessary and sufficient condition for a non-empty subset H of a group G to be a subgroup of G is that $a, b \in H \Rightarrow ab^{-1} \in H$.

অথবা /Or

চক্ৰীয় গোটৰ সংজ্ঞা দিয়া। প্ৰমাণ কৰা যে n কোটিৰ সসীম গোট এটা চক্ৰীয় গোট হ'ব যদি আৰু একমাত্ৰ যদি ইয়াত n কোটিৰ এটা উপাদান থাকে।

Write the definition of cyclic group. Prove that a finite group of order n is cyclic if and only if it has an element of order n.

3. (a) অভিলম্ব উপগোটৰ সংজ্ঞা দিয়া। প্রমাণ কৰা যে H এটা G গোটৰ অভিলম্ব উপগোট যদি আৰু একমাত্র যদি $gHg^{-1} = H \ \forall g \in G.$ 1+4=5

Define normal subgroup. Prove that H is a normal subgroup of a group G if and only if $gHg^{-1} = H \forall g \in G$.

(b) লেগ্ৰেঞ্জৰ উপপাদ্যটো উল্লেখ কৰি প্ৰমাণ কৰা। 1+5=6

State and prove Lagrange's theorem.

অথবা / Or

ধৰা হ'ল, H এটা Gৰ উপগোট আৰু $a, b \in G$, তেন্তে প্ৰমাণ কৰা যে—

- (i) Ha = Hb, यि आक यि विद्य $ab^{-1} \in H$;
- (ii) Ha এটা Gৰ উপগোট হ'ব যদি আৰু যদিহে $a \in H$.

Let H be a subgroup of a group G and $a, b \in G$, then prove that—

- (i) Ha = Hb if and only if $ab^{-1} \in H$;
- (ii) Ha is a subgroup of G if and only if $a \in H$.
- **4.** (a) ক্রমবিনিমেয় নোহোৱা ৰিং এটাৰ উদাহৰণ দিয়া।

 Give an example of a non-commutative ring.
 - (b) এটা ৰিঙৰ একক মৌলৰ সংজ্ঞা দিয়া।

 Define unit element in a ring.

P25/1440

P25/1440

- (c) এটা আইডিয়েল নোহোৱা উপৰিংৰ উদাহৰণ দিয়া।

 Give an example of a subring which is not an ideal.
- (d) প্ৰমাণ কৰা যে ৰিংত থকা সকলো a, b ৰ বাবে 2Prove that for all a, b in ring R a(-b) = (-a)b = -ab
- (e) দেখুওৱা যে Z_{12} ইনটিগ্রেল ড'মেইন নহয়। Show that Z_{12} is not an integral domain.
- প্ৰমাণ কৰা যে এটা ৰিং Rৰ উপসমষ্টি S≠ φ, Rৰ উপৰিং হ'ব যদি আৰু একমাত্ৰ যদি a-b∈S আৰু ab∈ S∀a, b∈S.
 Prove that a subset S≠ φ of a ring R is a sub-ring of R if and only if a-b∈S and
- (g) প্রমাণ কৰা যে R বিঙৰ যি কোনো দুটা আইডিয়েল A আৰু B ব কাৰণে A+B এটা R ব আইডিয়েল হয় য'ত A+Bয়ে A আৰু B দুয়োটাকে অন্তর্ভুক্ত কবি লয়।

 $ab \in S \forall a, b \in S$.

Prove that for any two ideals A and B of a ring R, A+B is an ideal of R containing both A and B.

(h) প্ৰমাণ কৰা যে যি কোনো সসীম শূন্যভাজক নথকা ৰিং R এটা বিভাজন আঙঠি।

Prove that any finite non-zero ring R without zero division is a division ring.

**

2

4

4