4 SEM TDC MTMH (CBCS) C 8

2025

(May/June)

MATHEMATICS

(Core)

Paper: C-8

(Numerical Methods)

Full Marks: 60
Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

Use of scientific calculator is allowed

- 1. (a) State true or false:

 An exact number may be regarded as an approximate number with error zero.
 - (b) Write an algorithm to find the root of a linear equation.
 - (c) Define relative error and absolute error.

 1+1=2
- 2. (a) State true or false:

 Bisection method is always convergent.

1

(b) Describe secant method for solving an algebraic equation.

Or

Find a real root of the equation

$$x^3 - 2x - 5 = 0$$

by secant method correct up to three decimal places.

(c) Describe the geometrical interpretation of Newton-Raphson method.

Or

Determine the real root of

$$2x = \cos x + 3$$

by using iteration method correct up to three decimal places.

3. (a) Describe Gauss-Seidel method for the solution of system of linear equations.

Solve by Gaussian elimination method

$$x+y-z=2$$

$$2x + 3y + 5z = -3$$

$$3x + 2y - 3z = 6$$

(b) Solve by Gauss-Jordan method

$$5x - 2y + 3z = -1$$

$$-3x + 9y + z = 2$$

$$2x - y - 7z = 3$$

5

5

4

Or

Find the solution of the following system of equations by Gauss-Jacobi method:

$$5x + 2y + z = 12$$

$$x + 4y + 2z = 15$$

$$x + 2y + 5z = 20$$

4. (a) Define interpolation.

1

(b) Evaluate

$$\Delta^3(1-x)(1-2x)(1-3x)$$

if
$$h=1$$
.

2

2

5

(c) Construct forward difference table for the following values:

x	0	5	10	15	20	25
y	5	9	12	16	22	30

(d) Deduce Lagrange's interpolation formula.

Or

The population of a town is as follows:

Year		1971	1981	1991	2001	2011	2021
Population in lakhs	y	30	35	41	48	58	70

Estimate the population for the year 1985.

- Deduce trapezoidal rule for numerical (a) 5. integration.
 - Use the midpoint rule with M=5(b) approximate the integral

$$\int_{-1}^{1} \frac{dx}{1+x^2}$$
 5

Evaluate $\int_0^{10} x^2 dx$ by Simpson's $\frac{1}{3}$ rd rule. 5

Or

Evaluate $\int_{0.2}^{0.6} \frac{dx}{1+x}$ by Boole's rule correct to three decimal places, n=4.

- Find y(0, 2), by Euler's method, from the (a) equation $\frac{dy}{dx} = x^3 + y$, y(0) = 1, correct up to four decimal places, taking h = 0.1. 4
 - Write the computational formulae for (b) Runge-Kutta method of order two. 6

Or

Using Runge-Kutta method of fourth order, find the numerical solution at x = 0.2 for

$$\frac{dy}{dx} = 1 + y + x^2, \ y(0) = 0.5$$

taking h = 0.2.