4 SEM TDC GEMT (CBCS) 4.1/4.2/4.3

2025

(May/June)

ESID . 1963 AP

MATHEMATICS

(Generic Elective)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

All symbols have their usual meanings

Paper: GE-4.1

(Algebra)

UNIT-1

- 1. Answer the following questions:
 - (a) Fill in the blank:

 The number of symmetries of a rectangle is _____.

P25/1282

(Turn Over)

2

3

3

(Continued)

addition.

- State True or False: The set πQ is a group under usual
- Show that in a group G, $(a^{-1})^{-1} = a$ for any $a \in G$.
- Find the inverse of the element -j in the group of quaternions.
- Prove that if $(ab)^2 = a^2b^2$ in a group G, then ab = ba.
- Let G be a group such that the square of any element is unity. Show that G is Abelian.
- Describe the symmetries of a square. 4 Or

Describe the circle group.

Prove that the set $\{1, 2, ..., n-1\}$ is a group under multiplication if and only if n is prime.

Prove that the set of all 3×3 matrices with real entries of the form

$$\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

is a group under matrix multiplication.

UNIT-2

- 2. Answer the following questions:
 - State Lagrange's theorem.
 - State true or false: (b) Subgroup of a cyclic group is cyclic.
 - Let $H = \{(1), (12)(34), (13)(24), (14)(23)\}.$ (c) How many left cosets of H in S₄ are there?
 - Show that the centre of a group is an Abelian subgroup.
 - Let G be a group of order 60. What are the possible orders for the subgroups of G? Justify.
 - Consider the subgroup $H = \{\pm 1, \pm i\}$ of (f)the group of quaternions. Find any three left cosets of H.
 - Suppose that |G| = pq, where p and qare primes. Prove that every proper subgroup of G is cyclic.
 - Let H be a subgroup of a group G. Show that if index of H in G is 2, then H is normal in G.
 - Consider $H = \{1, 11\}$ of U(30). Find the (i)quotient group U(30)/H.

P25/1282

(Turn Over)

1

2

2

3

3

3

(j)
$$H = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R}, ad \neq 0 \right\}$$

Examine whether H is a normal subgroup of GL(2, R).

Or

Prove that the factor group of an Abelian group is Abelian.

Show the intersection of two normal subgroups is also a normal subgroup. (k)

Or

Let G be a group and let G' be the commutator subgroup of G. Prove that

- (i) G' is normal in G;
- (ii) if H is a subgroup of G and $H \supseteq G'$, then H is normal in G.

UNIT-3

3. Answer the following questions:

1+1=2

- State True or False: (a)
 - (i) Every ring has a multiplicative inverse.

(Continued)

5

5

(ii) Every element in a ring has an additive inverse.

2

2

4

5

- Show that the polynomial 2x+1 in (b) $Z_A[x]$ has a multiplicative inverse.
- Justify that the ring of all 2×2 matrices over reals under usual addition and multiplication of matrices is a noncommutative ring.
- List all polynomials of degree 2 in $Z_2[x]$. 3
- Show that the non-zero elements of a (e) field form a group under multiplication. 4
- that the ring (f)Show $Z[\sqrt{2}] = \{a+b\sqrt{2} : a, b \in Z\}$ is an integral domain.
- Consider the equation $x^2 5x + 6 = 0$. Find all solutions of this equations 3 in Z_8 .
- (h) Let $S = \{a+ib\}a, b \in \mathbb{Z}, b \text{ is even. Show }$ that S is a subring of Z[i] but not an ideal of Z[i].

Or

Prove that the intersection of any set of ideals of a ring is an ideal.

P25/1282 (Turn Over) (i) If A is an ideal of a ring R and unity belongs to A, prove that A = R.

Or

Let R be the ring of all continuous functions from R to R. Show that $A = \{f \in R : f(0) = 0\}$ is an ideal of R.

Paper: GE-4.2

(Application of Algebra)

- তলৰ যি কোনো দুটা প্ৰশ্নৰ উত্তৰ দিয়া : 6×2=12
 Answer any two of the following questions :
 - প্রমাণ কৰা যে, (m, b, r, k, λ) প্রাচলৰ সৈতে এটা
 BIBD সম্মীতিয় হয় যদি আৰু কেৱল যদিহে r = k
 হয়।
 Prove that a BIBD with parameters
 (m, b, r, k, λ) is symmetric if and only if
 r = k.
 - (b) ধৰাহওক, p>2 আৰু p এটা মৌলিক সংখ্যা। তেন্তে প্ৰমাণ কৰা যে তাত (p-1)/2টা দ্বিঘাত ৰেচিডিউ মডুল' p থাকে আৰু

$$Q_p = \left\{ res_p(n^2) \mid 1 \le n \le \frac{p-1}{2} \right\}$$

Let p be a prime number greater than 2. Then prove that there are (p-1)/2 quadratic residues modulo p, and

$$Q_p = \left\{ res_p(n^2) \mid 1 \le n \le \frac{p-1}{2} \right\}$$

(c) ধৰাহওক, F; 6t+1 মাত্ৰা (order)-ৰ সীমিত ফিল্ড, আৰু a হৈছে F-ৰ এটা প্ৰিমিটিভ মৌল আৰু ধৰাহওক $S_i = \{a^i, a^{2t+i}, a^{4t+i}\}, \qquad i=0,1,...,t-1.$ তেন্তে দেখুওৱা যে $S_0,...,S_{t-1}$ সংহতিবোৰে (6t+1,3,1) পাৰ্থক্য সংহতি পৰিয়ালৰ যোগাত্মক গ্ৰুপ F-ৰ এটা t-ফ'ল্ড গঠন কৰে।

Let F be a finite field of order 6t+1 and let a be a primitive element in F. Let $S_i = \{a^i, a^{2t+i}, a^{4t+i}\}, i=0,1,...,t-1$. Then show that the sets $S_0,...,S_{t-1}$ form a t-fold (6t+1,3,1) difference set family in the additive group F.

2. BIBD-ৰ ইনিডেন মেট্ৰিন্ন-ৰ ওপৰত এটা চমু টোকা লিখা। Write a short note on incidence matrix of a BIBD.

অথবা / Or

ধৰাহওক, $G=Z_7$ অখণ্ড সংখ্যা মডুল' 7-ৰ এটা যোগাত্মক গ্ৰুপ, আৰু $S=\{1,\,2,\,4\}$. দেখুওৱা যে, S হৈছে G-ৰ এটা পাৰ্থক্য সংহতি, আৰু ইয়াৰ প্ৰাচলবোৰ নিৰ্ণয় কৰা।

Let $G = Z_7$ be the additive group of integers modulo 7, and $S = \{1, 2, 4\}$. Show that S is a difference set in G, and find its parameters.

3. তলৰ যি কোনো দুটা প্ৰশ্নৰ উত্তৰ দিয়া :

DIBRUG

6×2=10

Answer any two of the following questions:

(a) Parity-check matrix

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix} \blacktriangleleft$$

সৈতে দ্বৈত বৈখিক ক'ড C নির্ণয় কৰা আৰু C-ৰ generator মেট্রিক্স G লিখা। লগতে Dual ক'ড C^{\perp} -ৰ মান নির্ণয় কৰা।

Find the binary linear code C with parity-check matrix

$$H = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

and write a generator matrix G of C. Also find the dual code C^{\perp} .

(b) জেনেৰেটৰ মেট্ৰিপ্স G-ৰ সৈতে দ্বৈত ক'ডৰ বাবে উন্নত সজ্জা লিখা আৰু 01111 ভেক্টৰটো ডিক'ড কৰা, য'ত

$$G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Write a standard array for the binary code with the generator matrix

$$G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

and decode the received vector 01111.

P25/1282

(Turn Over)

(c) প্রমাণ কৰা যে, $F[x]_n$ -ৰ উপসংহতি C এটা চাইক্লিক তিন্তা ক'ড হ'ব যদি আৰু কেৱল যদিহে C, $F[x]_n$ ৰিং-ৰ এটা আদর্শ হয়।

Prove that a subset C of $F[x]_n$ is a cyclic code if and only if C is an ideal of the ring $F[x]_n$.

- 4. দেখুওৱা যে, এটা দ্বৈত ক'ড (7, 16, 3) (যদিহে থাকে) এটা নিখুঁত ক'ড। Show that a binary code (7, 16, 3) (if it exists) is not a exists) is perfect.
- 5. (a) দেখুওৱা যে

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 1 & 6 & 4 & 2 & 3 \end{pmatrix}$$

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 6 & 2 & 3 & 7 & 5 \end{pmatrix}$$

বিন্যাস দুটাৰ গঠন চাইক্লিক আৰু একে। যদি ৪ – - $\beta = \sigma \alpha \sigma^{-1}$ হয়, তেন্তে σ –ৰ মান নিৰ্ণয় কৰা। Show that the permutations

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 1 & 6 & 4 & 2 & 3 \end{pmatrix}$$
(Continued)

and

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 6 & 2 & 3 & 7 & 5 \end{pmatrix}$$

have the same cyclic structure. Find σ such that $\beta = \sigma \alpha \sigma^{-1}$.

(b) অসমৰূপী গ্ৰাফৰ জেনেৰেটিং ফলনৰ ওপৰত এটা চমু টোকা লিখা। Write a short note on generating

functions for non-isomorphic graph.

এখন আয়তাকাৰ ডাইনিং টেবুলত 6 জন মানুহ এনে-(c) ভাবে বহি আছে যাতে, দুজন টেবুলৰ দীঘল দৈৰ্ঘ্যফালে আৰু বাকী কেইজন টেবুলৰ চুটি দৈৰ্ঘ্যফালে মুখা-মুখিকে। m-টা ৰংৰ নেপকিনৰ পৰা তেওঁলোকক দিয়া হ'ল। তেওঁলোকৰ মাজত সকলো সম্ভৱ ৰংব নেপকিন বিতৰণৰ সকীয়া আৰ্হিৰ সংখ্যা বিচাৰি উলিওৱা :

A rectangular dining table seats six persons, two along each longer side and one on each shorter side. A colored napkin, having one of m given colors, is placed for each person.

P25/1282

(Turn Over)

4

8

Find the number of distinct patterns among all possible color assignments:

	1	2	
6			3
Y 1	5	4	

অথবা / Or

পলিয়া-ৰ উপপাদ্যটো উল্লেখ আৰু প্ৰমাণ কৰা। State and prove Polya's theorem.

- 6. (a) ধৰাহওক, A আৰু B দুটা শূন্যক মেট্ৰন্থ যাৰ মাত্ৰা একে। যদি AB = BA, তেন্তে প্ৰমাণ কৰা যে, A+B এটা শূন্যক মেট্ৰন্থ। Let A and B be nilpotent matrices of the same size. If A and B commute, then show that A+B is nilpotent.
 - (b) n×n নির্ণায়কৰ মান নির্ণায় কৰা :
 Compute the n×n determinant :

ESTD. 1963 APPLIERUGI

4

4

(c) Frobenius-König-ৰ উপপাদ্যটো উল্লেখ আৰু প্ৰমাণ কৰা।

State and prove Frobenius-König theorem.

অথবা / Or

যদি A এটা $m \times m$ হাদামার্দ মেট্রিক্স হয় যাব J_n হৈছে এটা উপ-মেট্রিক্স, তেন্তে প্রমাণ কবা যে $m \ge n^2$. (J_n হৈছে $m \times m$ মেট্রিক্স যাব প্রত্যেক মৌলবোৰ সমান আৰু সেইবোৰ সকলো 1.)

If A is an m-square Hadamard matrix that contains a J_n as a submatrix, then prove that $m \ge n^2$. (J_n denotes the m-square matrix whose entries are all equal to 1.)

7. যি কোনো দুটা প্ৰশ্নৰ উত্তৰ দিয়া : 8×2=16

Answer any two of the following questions :

$$(a)$$
 3×2 মেট্রিপ্স $A = \begin{bmatrix} 2 & 3 \\ 0 & 4 \\ 0 & 1 \end{bmatrix}$ –ৰ আনুমানিক বিপৰীত

মেট্ৰিক্সটো উলিওৱা।

P25/1282

(Turn Over)

8

Find the approximate inverse of the

$$3 \times 2 \text{ matrix } A = \begin{bmatrix} 2 & 3 \\ 0 & 4 \\ 0 & 1 \end{bmatrix}.$$

(b) ধৰাহওক,
$$A = LDU$$
 তলৰ তিনিটা মেট্ৰিক্সৰ গুণফল

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \\ 2 & 0 & 5 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 & 3 & 3 & 3 & 3 \\ 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 6 \end{bmatrix}$$

সমাধান কৰা,
$$LDU x = y$$
 য'ত y -ৰ মান

Let
$$A = LDU$$
 be the product of

Let
$$A = LDU$$
 be the product of $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \\ 2 & 0 & 5 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 & 3 & 3 & 3 & 3 \\ 0 & 0 & 1 & 2 & 2 & 2 & 2 & 2 \\ 0 & 0 & 1 & 2 & 2 & 2 & 2 & 6 \end{bmatrix}$

(Continued) P25/1282

(15)

the values Solve LDU x = y for

$$\begin{bmatrix} 2 \\ 9 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 9 \\ 6 \\ 6 \end{bmatrix}$$
 for y .

তলৰ মেট্ৰিক্সটো ৰ'-ৰিদিউসদ এশ্বিলন ফৰ্মলৈ নিবলৈ ৰ'-বিদাকশ্যন এলগ'বিথম ব্যৱহাৰ কৰা :

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}$$

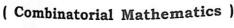
Use row-reduction algorithm to reduce the following matrix into row-reduced echelon form:

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}$$

P25/1282

(Turn Over)

Paper	:	GE-	4.3



- 1. (a) Find ${}^{8}P_{3}$.
 - (b) Write the principle of exclusion.
 - (c) A girl has 5 pencils of different colours. In how many ways she can arrange 2 them?
 - Find how many 2-digit numbers can be formed by using first 4 prime numbers.
 - From a team of 14 boys, find how many (e) football teams can be formed.
 - that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$, if $1 \le r \le n$.

Or

Find the number of distinguishable words that can be formed from the letters of VACANT.

- 1 2. (a) Write the principle of pigeonhole. 1
 - (b) State true or false: If there are more than m objects and there are will be at there are m boxes, then there will be at least 1 how. least 1 box with no object.

ESTD . DIBRUGA

- Find how many integers between 1 and (c) 250 are-
 - (i) divisible by 3;
 - 2+2=4 (ii) divisible by 3 and 7.
- (d) Let A, B are finite sets. Show that $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

Find the number of integer solutions of $x_1 + x_2 + x_3 = 24$, such that $1 \le x_1 \le 5$, $12 \le x_2 \le 18$, $-1 \le x_3 \le 12$.

- Write the generating function for 1, 1, 1, 1,
 - Define a generating function.
 - Find the co-efficient of x^4 in $(1-x)^{-2}$. (c) 4
 - recursively defined (d) sequence $a_n = 3a_{n-1} - 1$, $\forall n \ge 1$ and $a_0 = 2$. Find an explicit formula for a_n .

Determine the set of integers n for which $n^2 + 19n + 92$ is a square.

P25/1282

(Turn Over)

1

5

P25/1282

1

2

2

(Continued)

	(18)	100	LEGE
		OIBRU	ESTL
4.	Answer any two of the following questions:	-1	DIBRU

- Find the number of binary sequences of length n having no 11.
- Prove that there exist $2^n n$ numbers that have n digits made up only of numbers 1 and 2 and contain each digit at least once
- If n+1 integers are chosen, show that there exist two integers whose difference is divisible by n, where n is a positive integer.
- Write the number of portions of 6. 2
 - Determine how many integers between 1 and 60 are divisible by at least one of 2. 3 and 5. 5
 - Find the number of integers between 1 and 10000 that are neither perfect squares nor perfect cubes. 5

Or

Let numbers 1 to 20 are placed in any order around a circle. Show that the sum of some 3 consecutive numbers must be at least 32.

Write the number of ways to arrange ndistinct objects in a circle. 1 Find the number of arrangements of anv 3 letters from the 11 letters of the word COMBINATION Find the number of ways to arrange

n > 3 differently coloured beads in a necklace.

Find the number of different necklace that contain four red and three blue beads.

5

Define a combinatorial design. 7. (a)

Write one property of uniform design.

Write an example of Latin square of order 3.

Answer any two of the following:

(i) Prove that interchanging two rows of a Latin square produce a Latin square.

Show that there is no BIBD (balanced incomplete block design) with parameters b=12, k=4, v = 16 and r = 3 (λ not specified).

(iii) Determine the cycle index of the dihedral group D_a .

* * *

(Continued)