1

2

2

1 SEM TDC CSC G 1

2012

(November)

COMPUTER SCIENCE

(General)

Course: 101

(Theoretical Foundation of Computer Science)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. (a) State True or False:

The concatenation of two regular expressions R_1 and R_2 , written as R_1R_2 .

is also regular expression.

(b) Find all strings of length 5 or less in the regular set represented by the following:

$$a^* + (ab + a)^*$$

(c) Write regular expression for the following language:

The set of all strings of 0's and 1's

ending in 00.

MP13—1000/**39**

(Turn Over)

2

(a) State True or False: If L is the set accepted by NDFA, then

24 20

- there exists a DFA which also accepts L.
- Give the definition of Moore machine.
- (c) Answer any two from the following:
 - 6×2= Construct а minimum state automaton equivalent the to automaton M whose transition table is given below:

State	Input		
	0	1	
$\rightarrow q_0$	q_{l}	95	
q_1 q_2	q_6	q_2	
	q_0	q_2	
q_3	q_2	96	
q ₄	<i>q</i> ₇	95	
96	q_2	96	
97	96	94	
7	_{q6}	q_2	

(ii) Construct an {ab, ba}, and use it to construct a NFA DFA accepting the same set of (iii) Construct a Mealy machine which is equivalent to the Moore machine given below:

Present State	Next State		Outnut
	a = 0	a=1	Output
$\rightarrow q_0$	q_1	q_2	1
q_1	q_3	q_2	0
q_2	q_2	q_1	1
q_3	q_0	q_3	1

- State True or False: 3. (a) Regular grammar is type-0 grammar.
 - What is the highest type number (b) that can be applied to the following grammar?

$$S \rightarrow Aa$$
, $A \rightarrow c \mid Ba$, $B \rightarrow abc$

- Define phrase-structure grammar. What is a recursively enumerable set? 3+2
- Answer any one from the following: (d) 7
 - Construct a grammar that generates the language

$$L = \{a^{j}b^{n}c^{n} \mid n \ge 1, j \ge 0\}$$

(ii) Construct a grammar that generates the language

$$L = \{0^m 1^{2m} \mid m \ge 1\}$$

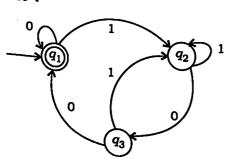
MP13-1000/39

(Continued

(Turn Over)

3

4+3


- **4.** (a) State True or False: $(P+Q)^* = (P^*Q^*)^*$, where P and Q are regular expressions.
 - (b) Define regular expression.
 - (c) Prove that

$$(1+00^*1)+(1+00^*1)(0+10^*1)^*(0+10^*1)=0^*1(0+10^*1)^*$$

- (d) Answer any two from the following: 6×2^{-1}
 - (i) Construct an FA equivalent to the regular expression

$$(0+1)^*(00+11)(0+1)^*$$

- (ii) Show that $L = \{a^p \mid p \text{ is a prime}\}\$ is not regular.
- (iii) Consider the transition diagram given below and find a regular expression which is accepted by the same:

- 5. (a) What is context-free grammar?
 - (b) Define parse tree for a CFG. 2
 - (c) Answer any two from the following: $6\times2=12$
 - (i) Reduce the following grammar to Greibach normal form:

$$S \rightarrow AA \mid a, S \rightarrow AA \mid b$$
(ii) Show that $L = \{a^n b^n c^n \mid n \ge 1\}$ is not

context-free but context-sensitive.

(iii) Reduce the following grammar to Chomsky normal form:

$$S \rightarrow aAD$$
, $A \rightarrow aB \mid bAB$,
 $B \rightarrow b$, $D \rightarrow d$

- 6. (a) Give the formal definition of push-down automaton.
 - (b) Construct a p.d.a. A equivalent to the following context-free grammar:

$$S \rightarrow 0BB$$
, $B \rightarrow 0S \mid 1S \mid 0$
Test whether 010^4 is in $N(A)$.
