(General) Course: 101 (Theoretical Foundation of Computer Science) Full Marks: 80 Pass Marks: 32 (Backlog) / 24 (2014-15 Session) Time: 3 hours The figures in the margin indicate full marks for the questions 1×8=8 Answer as directed: (a) Define finite automata. Write one difference between NFA and *(b)* DFA.

2014

(November)

COMPUTER SCIENCE

Total No. of Printed Pages—6

4

1 SEM TDC CSC G 1

(c) The grammar

(i) is type 3

 $B \rightarrow bB$, $B \rightarrow C$

 $P: S \rightarrow aSa, S \rightarrow aAa, A \rightarrow bB.$

 $G = \{N, T, P, S\}$ $N = \{S, A, B\}$ $T = \{a, b, c\}$

- (ii) is type 2 but not type 3 (iii) is type 1 but not type 2 (iv) is type 0 but not type 1
- (Choose the correct option) (d) Which of the following strings is not generated by the given grammar? $S \rightarrow SaSbS \in$ (i) aabb
 - (ii) abab (iii) aababb (iv) aaabb
 - (Choose the correct option) "Context-free grammar is closed under
- (State True or False) Recursive language is — of CFL. (Fill in the blank) A language L is accepted by an FSA iff it
- (h) Define pushdown automata. (Fill in the blank)
- (a) Construct a DFA for the regular (b) State pumping lemma for CFG.

Write the CFG to generate the set

(c)

(a)

(b)

3.

Show that the grammar $G = S \rightarrow aSbS|bSaS| \land$

 $\{a^mb^nc^p\mid m+n=p \text{ and } p\geq 1\}.$

is recursive. Determine the language recognized by the finite-state automaton

Construct a DFA with reduced state equivalent to the regular expression 43

3

3

5

5

5

15

10+(0+11)0*1. Write a short note on Chomsky (c) classification of language.

Or

Construct a regular expression to the transition diagram

(Turn Over)

P15-1200/78

3

5

б.

(c)

.15

4. (a) Explain minimization of finite automata

(b) If G is the grammar $S \to SbS|a$, show that G is ambiguous. (c) Explain the closure properties of regular:

Or

Determine whether the language given by $L = \{a^{n^2} \mid n \ge 1\}$

is context-free or not. Show that set of all strings over {a, b}

consisting of equal numbers of a's and b's is accepted by deterministic PDA. (b) Consider the following productions:

 $S \rightarrow \alpha B \mid bA$ $A \rightarrow aS \mid bAA \mid a$ $B \rightarrow bS \mid aBB \mid b$ For the string aaabbabbba, find a

Find a derivation tree of a*b+a*b given that a*b+a*b is in L(G), where G is $S \rightarrow S + S | S * S, S \rightarrow a | b$

Or

Explain in detail about equivalence of pushdown automata and CFG. Prove that a language L is accepted by some \in -NFA if and only if L is accepted

Construct the regular expression from the following transition diagram:

by some DFA.

 q_1 q_2 q_3 For the finite state machine M given in

the following table, test whether the

strings 101101 and 11111 are accepted by M: Input 1 O State q_1 q_{\cap} **→**(90) q_0 q_3 q_1 q_3 q_0 q_2 q_2 q_1 q_3

P15—1200/78

5. (a)

(Continued) P15-1200/78 (Turn Over)

44

15

5

5

Or

Construct a minimum-state automaton equivalent to a given automaton M whose transition table is given below:

15

State	Input	
	а	b
$\rightarrow q_0$	q_0	q_3
q_1	q_2	q_5
q_2	q_3	94
q_3	q_0	q_5
q_4 .	q_0	q_6
q_5	$q_{ m l}$	94
9 6	$q_{ m l}$	q_3

 $\star\star\star$