43

1

.2.

2

1

2

(Turn Over)

(3)

(Old Course)

(Theoretical Foundation of Computer Science)

:5

1

1

1

Full Marks: 80

Pass Marks: 32 (Backlog) / 24 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

(a) State True or False: 1.

 $\{a^nb^n|n\geq 1\}$ is context-free but not regular.

If $L_1 = \{bc, bcc, cc\}$ and $L_2 = \{cc, ccc\}$, (b) then find $L_1 \cdot L_2$.

If a regular expression is 1*0, then (c) find string set.

State True or False: (a) a grammar $G = (V_n, \Sigma, P, S)$, then

 V_n and Σ are finite but P can be infinite. State the difference between a Mealy machine and a Moore machine. (b)

P7/16

1.

2

2

3

Answer any two from the following:

6×2=12 (i) Construct minimum automata equivalent to an automata state whose transition table is defined by

	State	In	Input	
		a .	b	
	$\rightarrow q_0$	$q_{ m l}$	q_2	
	$q_{ m l}$	$q_{ m l}$	<i>q</i> ₃	
	q_2	q_3	94	
1	<i>q</i> ₃	$q_{ m l}$	q_5	
-	. 94	94	q_2	
L	q_5	q_6	q ₆	
			30	

- (ii) Construct an NFA accepting the set of all strings over {0, 1} that have at least two consecutive 0's and 1's.
- (iii) Convert the following NFA to its equivalent DFA:

(Continued)

P7/16

- State True or False: (a) Every finite subset of Σ^* is a regular lariguage.
- Consider the DFA given by the (b) transition table below:

•		Input	
	State	а	b
	→(q ₀)	q_2	$q_{ m l}$
	$q_{ m l}$	q_3	q_0
	q_2	q_0	q_3
	q_3	q_1	q_2
<u> </u>	whether t	he string	110101 i

accepted by the DFA or not. What is the highest type number that can be applied to the following (c)

grammar?
$$S \rightarrow Aa, A \rightarrow C|Ba, B \rightarrow abc$$

Show that the grammar (d)

$$G = S \rightarrow aSbS|bSaS|^{\wedge}$$

is recursive.

Answer any one from the following: (i) Construct a grammar that generates the language

the large
$$L = \{a^j b^n c^n | n \ge 1, j \ge 0\}$$

(Turn Over) ¹⁷/16

(a)

(c)

а

 $(P+Q)^* = (P^*Q^*)^*$, where P and Q are

 $^{+1*}(011)^*(1^*(011)^*)^* = (1+011)^*$

Represent the following set by regular

 $\{a^n | n \text{ is divisible by 2 or 3 or } n = 5\}$

 $\{w \in \{a, b\}^* | w \text{ has only one } a\}$

Answer any two from the following:

regular expression

P7/16

(i) Construct an FA equivalent to the

(0+1)* (00+11)(0+1)*

equivalent to the Mealy

(ii) Construct

4. (a) State True or False:

Prove that

regular expressions.

given below:

Moore

machine

machine

6×2=12

(Continued) 7/16

not regular.

(7)

What is context-free grammar?

Answer any two from the following:

 $S \rightarrow aB \mid bA$

 $A \rightarrow a|aS|bAA$ $B \to b|bS|aBB$

(ii) Reduce the following grammar to

 $S \rightarrow AA|a, S \rightarrow AA|b$

(iii) Show that $L = \{a^n b^n c^n | n \ge 1\}$ is not

formal

the

push-down automation.

Define

6. (a)

context-free but context-sensitive.

Define parse tree for a CFG.

(i) Convert the following

Chomsky normal form:

Greibach normal form:

the set of all palindromes over $\{a, b\}$.

(ii) Construct a grammar G to generate

(iii) Show that $L = \{ww | w \in \{a, b\}^*\}$ is

1

2

 $6 \times 2 = 12$

CFG

definition

of

(Turn Over):

3.1

- (b) Construct a PDA accepting $L = \{wcw^R | w \text{ is in } (0|1)^* \text{ and } w^R \text{ is the reverse of } w\}$.
- (c) Show the moves by the PDA for the string ((())).

Cramman ***

Define the lormal videballon of