Total No. of Printed Pages—9

2 SEM TDC CSC G 1 (N/O)

2017

(May)

COMPUTER SCIENCE

(General)

Course: 201

The figures in the margin indicate full marks for the questions

(New Course)

(Programme and Problem Solving with C)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

- 1. Answer the following questions?
 - (a) What is keyword?
 - (b) What is constant?
 - (c) Name the storage classes in C.
 - (d) What is union?
 - (e) What is string?
 - (e) What is 5===8.

(Turn Over)

 $1 \times 5 = 5$

(d)

(e)

2. Answer the following questions: 2×5=1 Write the differences between 'while' and 'do-while' loops. Write the differences between 'switch' and 'if' statements. Define structure. What are bitwise operators? What is type casting? 3. Answer any three of the following questions: 11×3=3 (a) (i) Explain with examples about the use of loops in C. (ii) Write a C program to find the factorial of number using recursion. (b) (i) Write a C program to find whether a given string is palindrome or not. (ii) Write a C program to find the sum of all digits of a positive number. (c) (i) Write a C program to add the positive numbers stored in an (ii) Write a C program to copy the variable structure variable. to another

	•
(i)	Write a C program to display all the even numbers between 100 and 200.
(ü)	Write a C program to display numbers between 1 to 100 which are divisible by 7.
(iii)	Explain three string handling functions.
(i)	Define pointers and files in C.
	Write C program to display the following:
	1 *
	2 * *
	3 * * *
	4 * * * *

(iii) Mention the differences between

break and continue statements.

3

(4)

(Old Course)

(Discrete Structure) Full Marks: 80

Pass Marks: 32

Time: 3 hours

- 1. Select the correct option:
 - (a) The power set 2^8 of the set
 - $s = \{3, \{1, 4\}, 5\}$ is

 (i) $\{s, 3, 1, 4, \{1, 3, 5\}, \{1, 4, 5\}, \{3, 4\}, \phi\}$
 - (ii) {s, 3, {1, 4}, 5} (iii) {s, 3, {3, {1, 4}, {3, 5}, \$\phi\}
 - (iv) None of the above
 - If $A = \{1, 2, 3, 4\}$, $B = \{2, 3, 4, 5\}$, $C = \{1, 3, 4, 5, 6, 7\}$, then $A \cap (B \cup C)$ is equal to
 - equal to $A \cap (B \cup C)$ is (i) $\{1, 4, 5, 7\}$ (ii) $\{1, 2, 3, 4\}$
 - (iii) {1, 2, 3, 5}
 - (iv) {1, 2, 3, 6}

(5)

- (c) If A is a finite set with n elements, the number of elements in the largest equivalence relation of A is
 - (i) 1 (ii) n (iii) n (iv) n+1
- (d) If R be a symmetric and transitive relation on a set A, then
 - (i) R is reflexive and hence an equivalence relation(ii) R is reflexive and hence a partial order
 - (iii) R is not reflexive and hence not an equivalence relation

 (iv) None of the above
 - If $f: A \to B$ be a function, and let E and F be subset of A, consider the following statement about image: $S_1: f(E \cup F) = f(E) \cup f(F)$

 $S_1: f(E \cup F) = f(E) \cup f(F)$ $S_2: f(E \cap F) = f(E) \cap f(F)$ Which of the following is 'true' about S_1

and S_2 (i) Only S_1 is correct

(ii) Only S_2 is correct (iii) Both S_1 and S_2 are correct

(iv) None of S_1 and S_2 are correct

- If n elements are to be sorted using merge sort, the worst case complexity could be
 - (i) O(n)
 - (ii) O(1)
 - (iii) $O(\log_2 n)$
 - (iv) $O(n^2)$ The number of distinct simple graph
- with up to three node is (i) 10
 - (ü) 15
 - (üi) 7
 - (iv) 9
- (h) The total number of edges in a complete graph of n vertices is (i) n

(iii) n^2-1

P7/421

(iv) $\frac{n(n-1)}{2}$

- 2. Answer any four of the following questions:
 - Show that (a)

$$A \cap (B-C) = (A \cap B) - (A \cap C)$$

- Solve the recurrence relation $t_n = 4(t_{n-1} - t_{n-2})$
 - subject to initial condition $t_n = 1$ for n=0 and n=1.
- Find the generating function of a (c) sequence $a_r = \frac{1}{(r+1)!}, r = 0, 1, 2, \cdots$

(d) Find the coefficient of
$$x^{18}$$
 in
$$(x+x^2+x^3+x^4+x^5)(x^2+x^3+x^4+\cdots)^5$$

- Show that 2^x is in $O(3^x)$ but 3^x is not in $O(2^{x}).$
- A connected planar graph has 6 vertices (f) each of degree 4. Determine the number of regions into which this planar graph can be splitted.

P7/421

 $4 \times 4 = 16$

.

3. Answer any eight of the following questions:

(a) What is composition of function? If A, B, C and D are four sets and f, g and h are three functions (or mappings) defined as $f: A \rightarrow B$

$$f: A \to B$$
, $g: B \to C$ and $h: C \to D$
then prove that $(h \circ g) \circ f = h \circ (g \circ f)$.
Show that a connected planar graph
with n vertices and e edges in

- with n vertices and e edges has e-n+2 faces.

 Explain the shortest path algorithm of a graph.
- (d) Use generating function to solve the recurrence relation

$$a_{n+2} - 2a_{n+1} + a_n = 2^n$$
, $a_0 = 2$, $a_1 = 7$

- (e) What is meant by growth of functions? growth of $f(x) = (x+1)\log(x^2+1)$, estimate the
- (f) Explain floor and ceiling functions with their graph.

Use recursive formula of summation together with mathematical induction to prove that for all positive integers n, if a_1, a_2, \dots, a_n and c are real numbers,

then
$$\sum_{i=1}^{n} c a_i = c \left(\sum_{i=1}^{n} a_i \right)$$

are

equivalence? Show that

n vertices and m edges.

What

(h)

[(p∧q)∨(q∧r)∨(r∧p)] ⇔ [(p∨q)∧(q∨r)∧(r∨p)]
 (i) What is spanning tree? Write the algorithm to find a minimum spanning tree for connected weighted graph with

tautology

logical

and

(i) What is inverse function? If the function
$$f: R \to R$$
 be defined by $f(x) = x^2 + 3$, then find $f^{-1}(3)$ and $f^{-1}(11)$.

P7/**421**

P7-800+200/421 2 SEM TDC CSC G 1 (N/O)