1 SEM TDC MTH M 1

2018

(November)

MATHEMATICS

(Major)

Course: 101

(Classical Algebra, Trigonometry and Vector Calculus)

Full Marks: 80

Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Classical Algebra)

1. (a) Write the limit points of the sequence

$$S_n = (-1)^n \left(1 + \frac{1}{n}\right)$$

1

(Turn Over)

(b) Define a Cauchy sequence. Prove that the sequence $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...\}$ is a

Cauchy sequence.

(c) Show that the sequence $\{S_n\}$ given by

$$S_n = \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}, \ \forall \ n \in \mathbb{N}$$

is convergent.

- (d) Show that every bounded sequence has a limit point.
- 2. (a) Show that the series 1+2+3+...+n+... cannot converge.
 - (b) Prove that if $\sum u_n$ is a series of positive terms and $\sum u_n$ is convergent, then

$$\sum \frac{u_n}{1+u_n}$$

is convergent.

(Continued)

3

1+2=3

3

3

(c) Write the statement of Cauchy's Root
Test for the convergence of a series of
positive terms and test the
convergence of the series

$$1 + \frac{x}{2} + \frac{x^2}{3^2} + \frac{x^3}{4^3} + \dots \infty, x > 0$$

applying it.

2+3=5

07

- (d) Test the convergence of any one of the following:
 - (i) $\sum_{n=1}^{\infty} \frac{1}{2^n + 3^n}$
 - (ii) $\sum \frac{n^3}{n^3+1} x^{n-1}$
- (a) If the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$

are connected by the relation $\beta + \gamma = \alpha + \delta$, where α , β , γ , δ are the roots of the equation, then prove that

$$p^3 - 4pq + 8r = 0$$

4

5

18 (Turn Over)

P9/118

2

3

1

2

(b) If the roots of the equation $x^n - 1 = 0$ be $1, r_1, r_2, ..., r_{n-1}$, then prove that $(1-r_1)(1-r_2)...(1-r_{n-1})=n$

3

3

5

- (c) Find the equation whose roots are roots of equation the $x^5 + 4x^3 - x^2 + 11 = 0$, each diminished by 3.
- (d) Solve by Cardan's method: $x^3 - 21x - 344 = 0$

GROUP-B

(Trigonometry)

4. Answer any two:

4×2=8 (a) Find the equation whose roots are the nth powers of the roots of the equation

$$x^2 - 2x\cos\theta + 1 = 0$$

(b) Prove that $\sin 5x = 16\sin^5 x - 20\sin^3 x + 5\sin x$

P9/118

- Deduce the expansion of $\cos \alpha$ in ascending powers of α .
- 5. (a) Show that $\log i = \left(2n + \frac{1}{2}\right)i\pi$
 - where $\tan\log(x+iy)=a+ib,$ $a^2 + b^2 \neq 1$, prove that $\tan \log (x^2 + y^2) = \frac{2a}{1 - a^2 - h^2}$
- 6. (a) Write the interval of θ for which $\theta = \tan\theta - \frac{1}{2}\tan^3\theta + \frac{1}{5}\tan^5\theta - \dots$

(b) Show that
$$\pi = 2\sqrt{3} \left[1 - \frac{1}{3.3} + \frac{1}{5.3^2} - \frac{1}{7.3^3} + \dots \right]$$

7. (a) Write the condition that is to be satisfied by the common difference of the angles in AP so that the sum of the sines and sum of the cosines of n angles are each equal to zero.

(b) Answer any two:

3×2=6

- (i) Sum to n terms of the series $\cos^2 \alpha + \cos^2 3\alpha + \cos^2 5\alpha + \dots$
- (ii) If $\sin (\alpha + i\beta) = x + iy$, prove that $x^2 \csc^2 \alpha - y^2 \sec^2 \alpha = 1$
- (iii) Separate sinh(x+iy) into real and imaginary parts.

GROUP—C

(Vector Calculus)

- **8.** (a) A particle moves along the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5, where t is the time. Find the component of velocity at time t = 1 in the direction $\hat{i} 3\hat{j} + 2\hat{k}$.
 - (b) Find a unit normal to the surface $x^2y+2xz=4$ at the point (2, -2, 3).
 - (c) Define directional derivative of a scalar field ϕ in the direction \vec{a} .

P9/118

(d) Prove that the vector

 $\vec{A} = 3y^4z^2\hat{i} + 4x^3z^2\hat{j} - 3x^2y^2\hat{k}$ is solenoidal.

(e) Find curl \overrightarrow{A} at the point (1, -1, 1) if

 $\vec{A} = xz^3\hat{i} - 2x^2yz\hat{j} + 2yz^4\hat{k}$

2

3
