Total No. of Printed Pages—7

1 SEM TDC PHY M 1

2017

(November)

PHYSICS

(Major)

Course: 101

(Mechanics and Properties of Matter)

Full Marks: 80

Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option from the following: 1×8=8
- Newton's law of motion is represented by a differential equation which is

 - (i) first order
 - (ii) second order
 - (iii) second degree
 - (iv) second order second degree

- The Lagrangian of a system is written as $L = T - V = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) - V(r)$. Which of the following quantities is conserved?
 - (i) $mr\dot{\theta}^2$
 - (ii) mr0
 - (iii) $mr^2\dot{\theta}$
 - (iv) $mr^2\dot{\theta}^2$
- For the special case of inverse square law forces, the virial theorem takes the form
 - (i) $\overline{T} = -\frac{1}{2}\overline{V}$
 - (ii) $\overline{T} = -\frac{1}{4}\overline{V}$
 - (iii) $\overline{T} = -\overline{V}$
 - (iv) $\overline{T} = \overline{V}$
- (d) For a spherical shell, the gravitational potential at a point inside the shell is (R = radius of the shell, r = distance ofthe point from the centre of the shell)

 - $(iii) \frac{MG}{D^2} \cdot r$

(iv) None of the above

- The value of the radius of gyration of a (e) body about the axis of rotation depends on
 - the position of the axis of rotation
 - the direction of the axis of rotation
 - (iii) the distribution of the mass of the body about the axis
 - (iv) All of the above
- The relationship between the elastic (f)constants is
 - (i) $\frac{9}{\eta} = \frac{3}{Y} + \frac{1}{K}$
 - (ii) $\frac{Y}{Q} = \frac{\eta}{3} + \frac{1}{K}$ (iii) $\frac{9}{V} = \frac{3}{n} + \frac{1}{K}$
 - (iv) $\frac{3}{v} = \frac{1}{n} + \frac{9}{K}$
- The constraint of rigidity is (g)
 - conservative
 - (ii) scleronomic
 - (iii) holonomic
 - (iv) All of the above

2

(h)	Which of the following is a fictitious force?	
	(i) Coriolis force	
	(ii) Centrifugal force	
	(iii) Both (i) and (ii)	
	(iv) None of the above	
(a)	What is reduced mass of a two-body system?	2
<i>(b)</i>	Prove that in absence of external torque, the angular momentum of a system of particles is conserved under the strong law of action and reaction.	2
(c)	is conservative but the field $\vec{F}_2 = y\hat{i} - x\hat{j}$	3
d)	Show that excess pressure inside a liquid drop is $p = \frac{2T}{r}$, where symbols have their named and the symbols	
	have their usual meaning.	3
e)	What are generalized coordinates?	2
ŋ	Define virtual work. What is d'Alembert's principle?	,

Prove that in absence of any nongeneralized forces, the potential momentum corresponding to any cyclic coordinate is a conserved quantity.

3. (a) Prove that the gravitational force exerted by a symmetric of mass M on a particle external to itself is exactly the same as if the share were replaced by a particle of mass M located at the centre.

In an elastic collision between two particles of mass m_1 and m_2 moving with velocities \vec{v}_1 and \vec{v}_2 respectively, prove that the opening angle between the paths of the emerging particles is given by $\cos\theta = \frac{(m_1 - m_2)v_2}{2m v}$

Show that the law of conservation of momentum is invariant to Galilean

Reduce the two-body central force problem to the equivalent one-body problem.

8P/151A

1+1=2

(Continued)

(c)

transformation.

(Turn Over)

. 5

5

2.

5

5

4

- (e) Show that the kinetic energy for a system of particles consists of two parts: (i) the kinetic energy obtained if all the mass were concentrated at the centre of mass, (ii) the kinetic energy of motion about the centre of mass.
- 4. (a) What is Kepler's second law of planetary motion? Show that angular momentum conservation is equivalent to Kepler's second law.

 1+3=4
 - (b) Show that the moment of inertia of a circular lamina about a tangent in its own plane is given by $I = \frac{5MR^2}{4}$.
 - (c) Show that a shear is equivalent to a compression and an extension at right angles to each other.
 - (d) Derive the Jurin's equation for rise of a liquid in a capillary tube.

Or

The pressure of air in a soap bubble of 0.7 cm diameter is 8 mm of water above the atmospheric pressure. Calculate the surface tension of the soap solution.

- 5. (a) Using the d'Alembert's principle, obtain the Euler-Lagrange equation of motion.
 - (b) How does the earth's rotation affect the small oscillations of an ordinary pendulum?
 - (c) Obtain the Lagrangian for a charged particle subject to an electromagnetic field.

Or

A bead is sliding on a uniformly rotating wire in a force-free space. Write down the Lagrangian for this bead and hence obtain the equation of motion of the bead.

**

8P/151A

(Continued)

5

5 ·.