## 2 SEM TDC PHY M 1

## 2017

(May)

PHYSICS

( Major )

Course: 201

## (Thermal Physics and Waves and Oscillations)

## Full Marks: 80 Pass Marks: 32/24 Time: 3 hours

The figures in the margin indicate full marks for the questions

- Choose and write the correct answer: If  $V_a$  be the average velocity of the molecules of a gas in equilibrium state, then
  - (i)  $V_a \propto T^2$ (ii)  $V_a \propto T$
  - (iii)  $V_a \propto \sqrt{T}$
- (iv)  $V_a \propto \frac{1}{\sqrt{T}}$ <sup>7</sup>/435

1×8=8

- The constant a in van der Waals equation arises due to the
  - (i) attractive forces between the gas molecules
  - (ii) repulsive forces between the gas molecules
  - (iii) attractive forces between the gas molecules and the wall of the container
  - (iv) finite volume of the gas
- The first evidence in favour of the molecular structure of gas comes from the experimental observation of
  - (i) gas equation
  - (ii) tracks of particles in cloud chamber
  - (iii) motion of molecules in a conduction phenomenon
  - (iv) Brownian movement of colloidal particles
- (d) The efficiency of a Carnot engine operating between the temperatures  $T_1$  and  $T_2$  of the source and the sink respectively can be increased by
  - (i) increasing the sum  $(T_1 + T_2)$
  - (ii) decreasing the difference  $(T_1 T_2)$
  - (iii) decreasing the ratio  $(T_2/T_1)$
  - (iv) increasing the ratio  $(T_2/T_1)$

- Internal energy of a real gas depends upon
  - (i) both temperature and volume
  - (ii) temperature only
  - (iii) volume only
  - (iv) pressure
- Zeroth law of thermodynamics is related (f) to
  - (i) internal energy
  - (ii) heat
  - (iii) temperature
  - (iv) work
- The amplitude resonance in forced vibration occurs, when the frequency of the applied force is
  - (i) slightly less than the natural frequency of the body
  - (ii) slightly greater than the natural frequency of the body
  - (iii) equal to the natural frequency of the body
  - (iv) twice the natural frequency of the body

- (h) The velocity of sound (V) in a gaseous medium is related to its pressure (P) by the relation
  - (i)  $V \propto P$
  - (ii)  $V \propto \frac{1}{P}$
  - (iii)  $V \propto \frac{1}{\sqrt{P}}$
  - (iv)  $V \propto \sqrt{P}$
- 2. (a) State and prove the law of equipartition of energy. 2+5=7
  - (b) What is meant by mean free path of the molecules of a gas? Find an expression for it. How is the mean free path related to the pressure and absolute temperature of the gas? 1+4+2=7

What are transport phenomena? Deduce an expression for the viscosity of a gas in terms of mean free path of molecules of the gas.

2+5=7

(c) In what respect a real gas differs from an ideal gas? Describe Andrews' experiment on carbon dioxide and draw the curves at different temperatures. Give a discussion on the results.

1+2+3+2=8

3. (a) State and explain the first law of thermodynamics. 1+2=3

(b) What is an adiabatic process? Explain why the temperature of a gas drops in an adiabatic expansion. 1+2=3

(c) One gram molecule of a diatomic gas at 27 °C expands adiabatically until its volume is doubled. Calculate the work done.

(Given R = 8.3 joule degree  $^{-1}$  mol  $^{-1}$ .)

 (a) Describe Carnot's reversible heat engine and calculate its efficiency.

(i) Derive the following Maxwell's thermodynamical equations:  $4 \times 2 = 8$   $(i) \left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P$ 

$$(ii) \left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$$

5. (a) State Stefan-Boltzmann law of radiation. Derive this law by applying thermodynamical relations. 1+4=5

(b) State Wien's law of energy distribution and describe how it can be verified 1+3 experimentally.

P7/435 (Continued)

435

- 6. (a) Derive an expression for the velocity of sound in a gaseous medium. On what factors, the velocity of sound in such medium depends?

  4+2=6
  - (b) What are Lissajous figures? Show that the shape of these figures depends upon the phase difference and amplitudes of the component motions.

    1+5=6
  - (c) Deriving necessary expressions, state under what conditions, a body can vibrate about its mean position of equilibrium in presence of damping forces. What happens if the damping force is totally withdrawn from the system?

\*\*\*