2 SEM TDC MTH M 1

2018

(May)

MATHEMATICS

(Major)

Course: 201

(Matrices, Ordinary Differential Equations, Numerical Analysis)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Matrices)

(Marks : 20)

- 1. (a) If A is an n-rowed non-singular matrix, then what is the rank of A^T ?
 - (b) Find the rank of the matrix

(1 2 3)

 $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 1 & 1 \end{pmatrix}$

2

1

(Turn Over)

$$A = \begin{pmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{pmatrix}$$

Hence find the rank of A.

Or

Find the rank of the matrix

$$\begin{pmatrix}
1 & 1 & -3 & 2 \\
2 & -1 & 2 & -3 \\
3 & -2 & 1 & -4 \\
-4 & 1 & -3 & 1
\end{pmatrix}$$

by reducing it to echelon form.

2. Answer any two of the following: $6 \times 2 = 12$

(a) Define characteristic roots of a matrix. Find the characteristic equation of the matrix

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{pmatrix}$$

and verify Cayley-Hamilton theorem. Hence compute A^{-1} .

8P**/501** (Continued)

(b) Find for what values of λ , the equations

$$x+y+z=1$$

$$x+2y+4z=\lambda$$

$$x+4y+10z=\lambda^{2}$$

have a solution and also solve them completely in each case.

(c) What do you mean by homogeneous and non-homogeneous linear equations? Show that the system of equations

$$5x+3y+7z=4$$
$$3x+26y+2z=9$$
$$7x+2y+10z=9$$

is consistent and solve it.

GROUP-B

(Ordinary Differential Equations)

(Marks : 30)

3. (a) Find Wronskian of $\cos bx$ and $\sin bx$ $(b \neq 0)$.

(b) Solve:

$$(x+y+1)\frac{dy}{dx}=1$$

^{8P}/501

5

(Turn Our)

1

Solve any one of the following:

Solve any one of the following:

Find the complete solution and singular (c) solution of the differential equation

$$y = px + f(p)$$
, where $p = \frac{dy}{dx}$

(i) Solve:
$$xdx + ydy + \frac{xdy - ydx}{x^2 + y^2} = 0$$

(ii) Prove that Wronskian of the functions
$$e^{m_1x}$$
, e^{m_2x} , e^{m_3x} is equal to
$$(m_1 - m_2)(m_2 - m_3)(m_3 - m_1) e^{(m_1 + m_2 + m_3)x}$$

(a) Under what condition
$$y = e^{ax}$$
 will be a solution of the equation
$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = 0$$
?

$$dx^2$$
 dx dx dx dx at the roots of the auxiliary are 1, 1, -2 of the differential

Show that the roots of the auxiliary equation are 1, 1, -2 of the differential equation
$$x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = x^2$$

(i)
$$\frac{d^2y}{dx^2} + y = \cos 2x$$

$$dx^{2}$$
(ii) $(D^{2}-4D+4)y=x^{3}e^{2x}$

(i)
$$(x^2D^2 - 3xD + 5)y = \sin(\log x)$$
 where
$$\frac{d}{dx} = D$$
(ii) $\sin^2 x \cdot \frac{d^2y}{dx^2} = 2y$, given $y = \cot x$ is a

(a) Solve by removal of the first-order derivative:
$$\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} + (x^2 + 1)y = x^3 + 3x$$

solution

Answer any two of the following:

(b) Solve by changing the independent variable:
$$\frac{d^2y}{dx^2} + \cot x \frac{dy}{dx} + 4y \csc^2 x = 0$$

(c) Solve by the method of variation of parameters:
$$\frac{d^2y}{dx^2} + 9y = \sec 3x$$

8P/501 (Continued)

1

2

3

4

⁸P/501

(Turn Over)

5×2=10

1

2

GROUP—C

(Numerical Analysis)

(Marks : 30)

- 6. (a) What is the degree of convergence of the Newton-Raphson method?
 - Give the geometrical interpretation of Newton-Raphson method.
 - Solve $x^3 2x 5 = 0$ for the positive root by iteration method.

Solve the equation $x \tan x + 1 = 0$ by regula falsi method starting with a = 2.5and b=3 correct to 3 decimal places.

(d) Solve by Gauss elimination method:

$$2x+3y-z=5$$
; $4x+4y-3z=3$; $2x-3y+2z=2$

Or

Apply Gauss-Jordan method to find the solution of the following system:

$$10x+y+z=12; \ 2x+10y+z=13; x+y+5z=7$$

1

4

5

5

- 7. (a) State 'true' or 'false': Simpson's one-third rule is better than the trapezoidal rule.
 - Show that $\delta = E^{\frac{1}{2}} E^{-\frac{1}{2}}$, where the symbols have their usual meanings.
 - 2 (c) Evaluate:

$$\Delta^3 (1-x)(1-2x)(1-3x)$$
 if $h=1$

- (d) Answer any two of the following: $5\times2=10$
 - (i) The population of a town is as follows:

x: 1941 1951 1961 1971 1981 1991 Year

51 46 36 29 24 Population in Lakhs y: 20

Estimate the population increase during the period 1946 to 1976.

(ii) Evaluate

$$\int_0^1 \frac{dx}{1+x}$$

by dividing the range into 10 equal parts correct to four decimal places.

- forward the Newton's (iii) Derive interpolation formula.
- (iv) Deduce the general quadrature formula for equidistant ordinates.
