2 SEM TDC PHY M 1

2019

(May)

PHYSICS

(Major)

Course: 201

(Thermal Physics and Waves and Oscillations)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose and write the correct answer: 1×8=8
 - (a) The RMS speed for hydrogen at NTP is higher than oxygen because
 - (i) its specific heats are higher than oxygen
 - (ii) its density is lower than oxygen
 - (iii) its molecules are smaller than oxygen
 - (iv) its viscosity is less than oxygen

- (b) The ratio of two specific heats and the number of degrees of freedom f is connected by which of the following relations?
 - (i) $\gamma = 2 + \frac{1}{f}$
 - (ii) $\gamma = f + \frac{1}{2}$
 - (iii) $\gamma = 1 + \frac{f}{2}$
- (iv) $\gamma = 1 + \frac{2}{f}$
 - (c) The entropy remains constant in
 - (i) an adiabatic process
 - (ii) an isothermal process
 - (iii) every natural process
 - (iv) both isothermal and adiabatic processes
 - (d) The expression for Helmholtz free energy is
 - (i) F = U + TS
 - (ii) F = U TS
 - (iii) F = U + PV
 - (iv) F = U PV

where the symbols bear usual meanings.

- (e) The ultraviolet catastrophe is the error at short wavelength in the
 - (i) Wien's displacement law
 - (ii) Kirchhoff's law
 - (iii) Rayleigh-Jeans law
 - (iv) Planck's law for the energy emitted by an ideal black body.
- (f) The Fraunhofer lines are known as A, B, C, D_1 , D_2 , F, G, H and K. Here D_1 and D_2 stand for
 - (i) hydrogen
 - (ii) calcium
 - (iii) sodium
 - (iv) oxygen
- (g) Two simple harmonic waves having similar properties can produce a stationary wave if they travel in a straight line in
 - (i) opposite directions
 - (ii) same directions
 - (iii) perpendicular directions
 - (iv) any direction

P9/565

(Turn Over)

The laws of transverse vibrations can be (h) combined to give which of the following relations?

(i)
$$n = 2l\sqrt{\frac{T}{m}}$$

(ii)
$$n = 2l\sqrt{\frac{m}{T}}$$

(iii)
$$n = l\sqrt{\frac{T}{2m}}$$

(iv)
$$n = \frac{1}{2l} \sqrt{\frac{T}{m}}$$

- What do you mean by transport 2. (a) phenomena? Deduce an expression for coefficient of viscosity from kinetic theory. . 1+3=4
 - Show that the average kinetic energy (b) associated with each degree of freedom is $\frac{1}{2}kT$.
 - Distinguish between a perfect gas and a real gas. Derive the van der Waal's equation of state. 2+3=5
 - Describe Andrews' experiment on CO2 and define the critical constants. 5+2=7
 - Show that the mean free path varies directly as the absolute temperature and inversely as the pressure.

Or

Discuss the effect of temperature and pressure on the coefficient of viscosity.

2+2=4

4

- Establish the relation $C_p C_v = R$ by application of the first law thermodynamics. Here the symbols bear usual meanings.
 - Draw the P-V diagram for Carnot's cycle indicating different stages of operation. Calculate the efficiency of such an engine working between the steam point and the ice point. wal a marrow over or or ballage ad

State and prove the Carnot's theorem.

- What do you mean by the term 'entropy'? Derive the expression for entropy of a perfect gas. 1+3=4
- Define extensive and intensive variables (d) and give examples. Establish the first thermodynamical relation

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$
 2+5=7

thermodynamical the What potentials? Show that $C_p - C_v = TE\alpha^2 V$, where α is the coefficient of volume expansion. 2+5=7

P9/565

(Continued

(Turn Over)

6

- For a perfect gas, show that $\left(\frac{\partial U}{\partial V}\right)_T = 0$ by application of Maxwell's relations. Here, U stands for internal energy.
- State Kirchhoff's law of black body radiations and establish mathematical relation. Mention about its applications. 4+2=6

Or

a gette per sweet de sected it our entre tre State Stefan's law and show how it can be applied to derive Newton's law of cooling. 2+4=6

- (b) What is solar constant? What is its unit in CGS system? 1+1=2
- 5. Answer any three questions of the following: and was factored comments

 $6 \times 3 = 18$

- For a simple harmonic wave, show that Particle velocity = Wave velocity × Slope of the displacement curve at that instant.
- Deduce the differential wave equation of transversely vibrating string. Find the expression of displacement at any time.

 $x = a\sin(\omega t + \alpha)$ and Given that representing the $u = b \sin \omega t$ displacement of a particle along X and Y Under respectively. axes circumstances can the combination of these two simple harmonic motions be represented by the equation of a circle?

Distinguish between damped and forced vibration. Deduce the general solution 2+4=6of forced vibration.

P9/565

(Continued

P9-3000/565

2 SEM TDC PHY M 1