otal No. of Printed Pages-11

3 SEM TDC CHM M 1 (N/O)

2018

(November)

CHEMISTRY

(Major)

Course: 301

(Inorganic Chemistry—I)

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

 $1 \times 5 = 5$

- (a) The complex ion which does not obey EAN rule is
 - (i) [Pt(NH₃)₆]⁴⁺
 - (ii) [Fe(CN)6]3-
 - (iii) [Co(NH₃)₆]³⁺
 - (iv) [Cu(CN)4]3-

(b) In the complex $[Ti(H_2O)_6]^{3+}$, the metal ion has

- (i) d1-configuration
- (ii) d2-configuration
- (iii) d3-configuration
- (iv) d5-configuration

(c) The free ion ground term for Ni²⁺ ion is

- (i) 4 F
- (ii) 2D
- (iii) ³ F
- (iv) 3D

(d) Which of the following has the highest lability?

- (i) SF₆
- (ii) [PF₆]
- (iii) $[SiF_6]^{2-}$
- (iv) [AIF₆]³-

(e) The number of 4f-electron in lanthanum is

- (i) O
- (ii) 1
- (iii) 2
- (iv) 5

2. Answer the following questions:

2×8=16

- (a) What is spectrochemical series? Write one application of the spectrochemical series. 1+1=2
- (b) Find out the values of L and S for 3_P , 1_D , 3_F and 2_G . $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2$
- (c) Write the name and formula of each of the following types of ligand: 1×2=2
 - (i) A bidentate ligand with one acidic and one neutral donor
 - (ii) A tridentate ligand with three neutral donors
- (d) Write the IUPAC names of the following compounds: 1+1=2
 - (i) Na₃[Co(CN)₅NO]
 - (ii) $[(NH_3)_5Co-NH_2-Co(NH_3)_5]Cl_3$

- Write the formulas of the following complexes: 1+1=2
 - Dichloro-bis-(triphenyl phosphine) palladium (II)
 - (ii) Pentaamine (dinitrogen) ruthenium (II) chloride
- $[Fe(H_2O)_6]^{2+}$ is labile but $[Fe(CN)_6]^{4-}$ is inert. Explain.
- Explain inert and labile complexes with (g)examples.
- What are the problems in the separation of lanthanides from one another?
- 3. Answer any three questions:

 $3 \times 3 = 9$

2

- (a) What do you mean by crystal field stabilization energy (CFSE)? Calculate CFSE for each of the following octahedral systems:
 - (i) d^5 -high spin
 - (ii) d6-low spin

1+2=3

P9/227 (Continued)

- Discuss the geometrical isomerism of $[Ma_2X_2]^{n\pm}$ and $[MA_4X_2]^{n\pm}$ complexes. 11/2+11/2=3
- Ni(CO)₄ is tetrahedral while [Ni(CN)₄]²⁻ ion is square planar. Explain in the light of valence bond theory. 11/4+11/4=3
- Draw and explain the Orgel diagram for a d^1 -system. 3
- What are inner complexes? Give the (e) characteristics of inner complexes.
- Write a note on acid hydrolysis of cobalt (III) compounds with suitable example.
 - Explain the mechanisms of reactions in the following: 2+2=4

(i)
$$[L_5MX] \xrightarrow{\text{slow}} X + [L_5M]$$

$$\downarrow^+ Y \text{ fast}$$

$$[L_5MY]$$

(ii)
$$[L_5MX] \xrightarrow{\text{slow}} \left[L_5M \stackrel{X}{\searrow} \right]$$

$$\downarrow^{\text{fast}}$$
 $[L_5MY] + X$

P9/227

3

5.	(a)	State	and	explain	the	following	with
		suitable examples:				No. of the last of	2+2=4

- (i) Laporte selection rule
- (ii) Spin selection rule
- The complex ion $[Co(NH_3)_6]^{3+}$ (b) octahedral and diamagnetic [CoF₆]³⁻ is also octahedral but paramagnetic. How does valence bond theory account for this observation?

6. Answer either (a) or (b):

3

- (a) What do you understand by lanthanide contraction? Discuss its causes. 1+2=3
- Give reasons of the following: (b)
 - (i) Ti^{4+} ion is more stable than Ti^{3+} ion.
 - (ii) d-block elements show variable oxidation state. 11/2

1 1/2