4 SEM TDC PHY M 2

2016

(May)

PHYSICS

(Major)

Course: 402

(Quantum Mechanics)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer from the following:

1×6=6

- (a) In Compton scattering, if a photon has wavelength equal to the Compton wavelength of the particle, the photon's energy is
 - (i) greater than the rest energy of the particle
 - (ii) less than the rest energy of the particle

- (iii) equal to the rest energy of the particle
- (iv) not related to the rest energy of the particle
- (b) Plane waves associated with particles
 - (i) have indefinite momentum and are delocalized
 - (ii) have definite momentum and are completely delocalized
 - (iii) have definite momentum and are
 - (iv) have indefinite momentum and are
- For stationary states, the expectation value of an operator
 - (i) is independent of time
 - (ii) is dependent on time
 - (iii) may or may not depend on time
 - (iv) depends on time if the potential is a

(d) A particle is trapped in a potential V(x) = 0 for $0 \le x \le a$ and $V(x) = \infty$ otherwise. The normalized wave function of the particle is

(i) $\sqrt{\frac{a}{2}} \sin \frac{n\pi x}{a}$ (ii) $\sqrt{\frac{4}{a}} \sin \frac{n\pi x}{a}$

(iii) $\sqrt{\frac{2}{a}}\sin\frac{n\pi x}{a}$ (iv) $\left(\frac{2}{a}\right)^{3/2}\sin\frac{n\pi x}{a}$

- Which of the following operators is not Hermitian?
 - (i) $i\frac{d}{dx}$
 - (ii) $\frac{d^2}{dx^2}$
 - (iii) $-i\hbar x \frac{d}{dx}$
 - (iv) All of the above
 - Which of the following commutation (f)relations is not correct?

(i)
$$\left[\frac{\partial}{\partial x}, F(x)\right] = 0$$

(ii)
$$\left[\frac{\partial}{\partial x}, \frac{\partial^2}{\partial x^2}\right] = 0$$

(iii) $[x, p_x] = i\hbar$

(iv) [[A, B], C] + [[B, C], A] + [[C, A], B] = 0

(Turn Over)

2

6

5

- 2. (a) What is ultraviolet catastrophe?
 - (b) State the Bohr's correspondence principle. Illustrate the principle with an example.
 - (c) The wave function of a particle confined in a box of length a is

$$\Psi(x) = \sqrt{\frac{2}{a}} \sin \frac{nx}{a}, \quad 0 \le x \le a$$

Calculate the probability of finding the particle in the region $0 \le x \le \frac{a}{2}$.

(d) If A is a Hermitian operator and ψ is its normalized eigenfunction, show that—

(i)
$$\langle A^2 \rangle = \int |A_{\psi}|^2 dV$$
;

- (ii) $\langle A^2 \rangle \ge 0$.
- (e) Check whether the following operators are linear or not:

(i)
$$A\psi(x) = \psi(x) + x$$

(ii)
$$B \psi(x) = \frac{d\psi}{dx} + 2\psi(x)$$

(f) The ground state wave function of a particle of mass m is given by

$$\psi(x) = \exp\left(-\frac{\alpha^2 x^4}{2}\right)$$

with energy eigenvalue $\frac{\hbar^2 \alpha^2}{m}$. What is the potential in which the particle moves?

- 3. (a) Illustrate the Heisenberg's uncertainty principle using the γ-ray microscope experiment.
 - (b) Explain how the Davisson-Germer experiment can explain the wave nature of electrons.
 - (c) Derive the Planck's law for spectral distribution. Obtain the Rayleigh-Jeans formula and Wien's displacement law from the Planck's law. 3+3=6

Or

An electron in the n=2 state of hydrogen remains there on the average of about 10^{-8} s, before making a transition to n=1 state.

(i) Estimate the uncertainty in the energy of the n=2 state.

100 1:00

- (ii) What fraction of transition energy is this?
- (iii) What is the wavelength and width of this line in the spectrum of hydrogen atom? 2+2+2
- 4. (a) Give a statistical interpretation to the wave function. Show that probability is
 - A harmonic oscillator is in the ground state and its wave function is

$$\Psi_0(x) = \left(\frac{m\omega}{\hbar\pi}\right)^{1/4} \exp\left(-\frac{m\omega x^2}{2\hbar}\right)$$
Where

- (i) Where is the probability density
- (ii) What is the value of maximum probability density?
- A potential is represented by the

and
$$V(x) = 0$$
 for $x < 0$
 $V(x) = V_0$ for $x > 0$
which a position

in which a particle moves. If the energy E of the particle is $0 < E < V_0$, calculate the reflection and transmission coefficients for the particle.

Or

Consider a particle of mass m moving in a one-dimensional potential specified by

$$V(x) = \begin{cases} 0, & -2a < x < 2a \\ \infty, & \text{otherwise} \end{cases}$$

Find the energy eigenvalues and eigen-3+3=6functions.

Consider the wave function 5. (a)

$$\psi(x) = A \exp\left(-\frac{x^2}{a^2}\right) \exp(ikx)$$

where A is a real constant.

- (i) Find the value of A.
- (ii) Calculate $\langle p \rangle$ for this wave function.

[Hint :
$$\int_0^\infty \exp(-ax^2) dx = \frac{1}{2} \left(\frac{\pi}{a}\right)^{1/2}$$
 and $\int_0^\infty x^n \exp(-ax^2) dx = 0$ if n is odd]

3+3=6

2+2=4

Define the following:

- (i) Hermitian operators
- (ii) Unitary operators

**