Total No. of Printed Pages-11

4 SEM TDC CHM M 1 (N/O)

2016
(May)
CHEMISTRY
(Major)
Course: 401
(Physical Chemistry—I)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

1. Select the correct answer:

1×5=5

- (a) Li⁺ has a smaller ionic mobility than K⁺ because of the
 - (i) larger size of Li+
 - (ii) larger radius to charge ratio of Li
 - (iii) greater degree of hydration of Li+
 - (iv) smaller nuclear charge of Li+

16/659

- (b) Which of the following is not a good conductor of electricity?
 - (i) NaCl (aq)
 - (ii) NaCl (s)
 - (iii) NaCl (molten)
 - (iv) Silver metal
- The primary cells are
 - (i) rechargeable
 - (ii) not rechargeable
 - (iii) everlasting
 - (iv) None of the above
- Standard electrode potentials of three metals X, Y and Z are -1.2 V, +0.5 Vand -3.0 V respectively. The reducing power of these metals will be
 - (i) Z > X > Y
 - (ii) X > Y > Z

 - (iii) Y > Z > X (iv) Y > X > Z
- 2 moles of an ideal gas at 27 °C temperature are expanded reversibly from 2 L to 20 L. If the value of R is taken as $2 \text{ cal } K^{-1} \text{mol}^{-1}$, then the entropy change will be
 - (i) 92·1

(ii) O

(iii) 4

(iv) 9.2

2. Answer any five of the following questions:

 $2 \times 5 = 10$

- conductance Equivalent (a) electrolyte at finite concentration is less than that of an infinite dilution. Explain.
- Explain why lithium ions move slower than potassium ions in water under an electric field.
- Discuss how the quinhydrone electrode can be used to determine the pH of a solution.
- In conductometric titration, the titre be always very much should concentrated than the solution to be titrated. Explain why.
- Give one example each of electrode (e) concentration cell and electrolyte concentration cell.
- Write the physical significance of Helmholtz free energy and Gibbs free energy.
- Calculate the entropy increase in the (g)evaporation of a mole of water at 100 °C.

(Heat of vaporization = 540 cal g⁻¹)

3. Answer any two of the following questions:

41/2×2

(a) Deduce an expression for the entropy changes associated with the changes in temperature and pressure of an ideal gas.

- (b) (i) State Carnot theorem.
 - (ii) A Carnot engine works between the temperatures 27 °C and 127 °C. Calculate the efficiency of the engine.
 - (iii) Predict whether at 27 °C, the following reaction is spontaneous or not:

 $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(l)$ Given $\Delta H = +9080 \text{ J mol}^{-1}$ and $\Delta S = +35 \cdot 7 \text{ J K}^{-1} \text{mol}^{-1}$.

- (c) (i) State and explain Nernst heat theorem.
 - (ii) Describe the third law of thermodynamics.

UNIT-II

4. Answer any two of the following questions:

 $7 \times 2 = 14$

(a) (i) Represent the variation of equivalent conductance of KCl and CH₃COOH with dilution graphically and give explanation for such variation.

5

(ii) Define the term transference number.

2

4

- (b) Explain Wien effect and Debye-Falkenhagen effect. 3½+3½=7
- (c) (i) Define molar conductivity and equivalent conductivity.

(ii) The equivalent conductances at infinite dilution (λ_0) of HCl, CH₃COONa and NaCl are

426·16, 91·0 and 126·45 ohm⁻¹cm²g eqvt⁻¹ respectively. Calculate λ_0 of acetic acid.

3

UNIT-III

5. Answer any *two* of the following questions:

 $5 \times 2 = 10$

(a) What is liquid junction potential? Derive an expression for it.

5

- (b) What are fuel cells? Discuss how the e.m.f. is generated in a hydrogenoxygen fuel cell.
- for 10 minutes with a current of 1.5 amperes. What is the mass of copper deposited at the cathode?

 (Atomic mass of copper = 63.56 u)
 - (ii) Define standard electrode potential.