otal No. of Printed Pages—12

4 SEM TDC CHM M 1 (N/O)

2017

(May)

CHEMISTRY

(Major)

Course: 401

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

1. Select the correct answer:

1×5=5

RAL LIBA

- (a) The solution of KCl which has the lowest value of equivalent conductance is
 - (i) 1 M
 - (ii) 0·1 M
 - (iii) 0.01 M
 - (iv) 0.001 M

(Turn Over)

7/591

- At infinite dilution, the equivalent conductances of CH3COONa, HCl and CH₃COOH are 91 mho cm² eq⁻¹, 426 mho cm² eq⁻¹ and 391 mho cm² eq⁻¹ respectively at 25 °C. The equivalent conductance of NaCl at infinite dilution is
 - (i) $126 \text{ mho cm}^2 \text{ eq}^{-1}$
 - (ii) 209 mho cm² eq⁻¹
 - (iii) $391 \text{ mho cm}^2 \text{ eq}^{-1}$
 - (iv) 908 mho cm² eq⁻¹
- In a galvanic cell (c)
 - (i) chemical reaction produces electrical energy
 - (ii) electrical energy produces chemical reaction
 - (iii) reduction occurs at anode
 - (iv) oxidation occurs at cathode
- (d) E° for the reaction

$$Fe + Zn^{2+} \rightarrow Zn + Fe^{2+}$$

is -0.35 V. The given cell reaction is

(i) feasible

P7/591

- (ii) not feasible
- (iii) in equilibrium
- (iv) not predictable

(Continued)

- The enthalpy of vaporization of a liquid is 30 kJ mol-1 and entropy of vaporization is 75 J mol⁻¹ K⁻¹. The boiling point of the liquid at one atmosphere is
 - (i) 250 K
 - (ii) 400 K
 - (iii) 450 K
 - (iv) 600 K
- 2. Answer any five of the following questions:

 $2 \times 5 = 10$

- Molar conductance at infinite dilution of weak electrolytes cannot be determined (a) by graphical methods. Explain why.
- Describe standard hydrogen electrode. (b)
- State and explain Walden's rule. (c)
- Calculate the potential of hydrogen electrode in contact with a solution whose pH is 10.
- Describe how work function varies with temperature at constant volume.
- The enthalpy and entropy change for a chemical reaction are -2.5×10^3 cal (f)7.4 cal deg⁻¹ respectively. and Determine whether the reaction is spontaneous or not at 298 K.

P7/591

3. Answer any two of the following questions:

41/2×2=9

21/2

(a) Deduce an expression for efficiency of a Carnot engine working between two temperatures T_1 and T_2 .

(b) (i) Explain how the third law of thermodynamics can be used for the evaluation of absolute entropy of a substance.

- (ii) Calculate the change in Gibbs' free energy accompanying the compression of 1 mole of CO₂ at 57 °C from 5 atm to 50 atm. Assume that CO₂ behaves like an ideal gas.
- (c) (i) Prove that

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

$$2^{1/2}$$

(ii) Write the physical significance of Helmholtz free energy and Gibbs' free energy.

UNIT-II

4. Answer any two of the following questions:

 $7 \times 2 = 14$

(a) (i) What are ionic mobilities? Derive a relation between ionic mobility and molar ionic conductance. 1+3=4

(ii) What is abnormal transport number of an ion? Under what condition, an aqueous solution of CdI₂ shows the negative transport number of Cd²⁺ ion? 1+2=3

(b) Define specific, molar and equivalent conductances. Explain why specific conductance decreases with dilution but the molar conductance increases.

3+4=7

(c) (i) Explain how the degree of hydrolysis and hydrolysis constant of aniline hydrochloride can be determined from conductance measurement.

(ii) Sketch schematically the conductometric titration curves for a strong acid by a strong base and a strong acid by a weak base.

1½+1½=3

P7/591

(Continued)

P7/591

2

(Turn Over)

UNIT-III

5.	Answer any two of the following questions	:
		$5 \times 2 = 10$

- (a) (i) Give one example each of electrode concentration cell and electrolyte concentration cell.
- (ii) Describe how the pH of a solution can be measured with the help of a hydrogen electrode.
 - (b) (i) Derive an equation showing the effect of electrolyte concentration on electrode potential.
 - (ii) Give one example of fuel cell.
 - (c) The standard reduction potential of Cu²⁺/Cu and Ag⁺/Ag electrodes are 0·337 V and 0·799 V respectively. Construct a galvanic cell using these electrodes so that its standard e.m.f. is positive. For what concentration of Ag⁺ will the e.m.f. of the cell at 25 °C be zero if the concentration of Cu²⁺ is 0·01 M?

2+3=5

2

3

4

1