4 SEM TDC PHY M 2

2017

(May)

PHYSICS

(Major)

Course: 402

(Quantum Mechanics)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

1×6=6

- (a) In the Heisenberg's gamma ray microscope experiment, gamma ray was used because
 - (i) gamma ray source is easily available
 - (ii) it is easily detectable
 - (iii) it increases the resolving power of the microscope
 - (iv) it decreases the resolving power of the microscope

7/468

(Turn Over)

- (b) The wavelength λ of matter wave associated with a particle of mass m moving with a kinetic energy E is equal to
 - (i) $\sqrt{2mE}$
 - (ii) 2mE
 - (iii) $\frac{h}{\sqrt{2mE}}$
 - (iv) $\frac{h}{\sqrt{mE}}$
- The minimum uncertainty in the simultaneous determination of position (Δx) and momentum (ΔP) is related by
 - (i) $\Delta x \Delta P = \frac{\hbar}{2}$
- (ii) $\Delta x \Delta P = \frac{h}{2}$

 - (iii) $\Delta x \Delta P = 2\hbar$ (iv) $\Delta x \Delta P = \frac{\hbar}{\sqrt{2}}$

- Schrödinger's one-dimensional wave equation is
 - (i) first order in x and second order in t
 - (ii) first order in t and second order in x
 - (iii) second order in both x and t
 - (iv) first order in both x and t
- A free particle has
 - energy but indefinite (i) definite momentum
 - (ii) indefinite energy but definite momentum
 - definite and energy (iii) definite momentum
 - (iv) indefinite energy and indefinite momentum

P7/468

- The momentum operator corresponds to
 - (i) $\frac{h}{i}\nabla$
 - (ii) $\frac{\hbar^2}{i} \nabla$
 - (iii) $\frac{\hbar}{i}\nabla$
 - (iv) $i\hbar\nabla^2$
- 2. (a) State and explain Planck's quantum theory of radiation. 1+2=3
 - (b) Express linear momentum of a photon in terms of wave vector \vec{k} .
 - (c) An incident X-ray photon of frequency ν₀ is scattered by a free electron at rest through an angle φ. Show that the change in wavelength of the photon is

$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \phi)$$

where m_0 is the rest mass of the electron.

3. (a) State and explain Bohr's complementary principle. 1+1=2

(b) Prove mathematically Heisenberg's uncertainty principle for one-dimensional wave packet.

Or

Describe Young's double-slit experiment.

- (c) An electron is confined to a box of length $1 \cdot 1 \times 10^{-8}$ m. Calculate the minimum uncertainty in its velocity.
- (a) Derive Schrödinger's three-dimensional time-independent wave equation. Why is this equation not valid for relativistic particles?
 - (b) What is the physical significance of wave function ψ ? Show that the probability density ρ and probability current density j satisfy the continuity equation

 $\frac{d\rho}{dt} + \vec{\nabla} \cdot \vec{j} = 0$

1+4=5

5

P7/468
(Continued)

71000

2

(Turn Over)

- 5. (a) Calculate the transmission coefficient of electrons of energy E through one-dimensional rectangular potential barrier.
 - (b) What is meant by stationary state? Find the stationary state solution independent of time by making use of probability distribution function. 1+4-2
- 6. (a) Define Hermitian operator. Show that—
 - (i) Hermitian operators have real eigenvalues;
 - (ii) if two Hermitian operators commute, then their product is also a Hermitian operator. 1+2+3=6
 - (b) State and prove Ehrenfest's theorem.

(c) Show that the operator

$$\frac{xp + px}{2}$$

is a linear operator.

_

P7/468

(Continued)

4 SEM TDC PHY M 2