Total No. of Printed Pages-12

4 SEM TDC CHM M 1 (N/O)

2018

(May)

CHEMISTRY

(Major)

Course: 401

(Physical Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48
Pass Marks: 14

Time: 2 hours

1. Select the correct answer:

1×5=5

(a) The number of electrons involved in the reaction when one faraday of electricity is passed through the electrolyte is

(i) 12×10⁴⁶

(ii) 96500

(iii) 6×10^{23}

(iv) 8×10^{16}

8P/683

(Turn Over)

- (b) The increase in the molar conductivity of HCl with dilution is due to
 - (i) decrease in interionic forces
 - (ii) increase in self-ionization of water
 - (iii) hydrolysis of water
 - (iv) decrease in self-ionization of water
- (c) For an electrolytic solution of $0.05 \text{ mol } l^{-1}$, specific conductivity is 0.0110 S cm^{-1} . The molar conductivity (in $\text{S cm}^2 \text{ mol}^{-1}$) is
 - (i) 0.055
 - (ii) 55
 - (iii) 220
 - (iv) 0.22
- (d) The potential of hydrogen electrode having pH = 10 is
 - (i) 0.592 V
 - (ii) -0.0592 V
 - (iii) 0·592 V
 - (iv) None of the above

(e) For the reaction between CO₂(g) and graphite

$$CO_2(g) + C(s) \rightarrow 2CO(g)$$

 $\Delta H = +170 \cdot 0 \text{ kJ}$ and $\Delta S = 170 \text{ JK}^{-1}$. The reaction is spontaneous at

- (i) 1200 K
- (ii) 900 K
- (iii) 500 K
- (iv) 298 K
- **2.** Answer any five questions from the $2\times5=10$ following:
 - (a) Describe any two factors upon which the transport number of an ion depends.
 - (b) Distinguish a reversible cell from an irreversible cell.
 - (c) Explain how the conductance of an electrolyte depends upon the viscosity of the medium.
 - (d) For the electrochemical cell

$$2Ag^{+} + Zn \rightleftharpoons Zn^{2+} + 2Ag$$

 E° cell is 1.56 V at 25 °C. Calculate the equilibrium constant of the reaction.

- Prove that for a system, decrease in the Helmholtz free energy function at constant temperature and volume represents the maximum amount of work obtainable from the system.
- One mole of an ideal gas expands (f)isothermally and reversibly from 5 dm3 to 10 dm 3 at 300 K. Calculate ΔG and

UNIT-I

- 3. Answer any two of the following questions: 41/2×2=1
 - For one mole of an ideal gas, prove that

$$\overline{\Delta S} = \overline{C}_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$$

(b) (i) Prove that

$$\left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial S}{\partial P}\right)_T$$

- (ii) State and explain Nernst's heat
- (c) (i) For a reaction $\Delta G = -a + bT \ln T$, where a and b are constants. Express ΔH as a function of T.

(ii) Calculate ΔG for the formation of H₂O (1) from the elements at 25 °C, $\Delta H_{f(H_2O)}^{\circ} = -286$ kJ. Entropies of H_2 (g), O_2 (g) and H_2O (l) are respectively 130.6 JK⁻¹ mol⁻¹, 205.0 JK⁻¹ mol^{-1} and $70.3 \text{ JK}^{-1} \text{ mol}^{-1}$.

UNIT-II

- 4. Answer any two of the following questions: $7 \times 2 = 14$
 - (i) What is transport number? Derive the relation between ionic conduc-(a) 1+3=4 tance and transport number.
 - (ii) The equivalent conductance of a very dilute solution of NaNO3 at 18 °C is 210.4 ohm⁻¹ cm². If the ionic conductance of NO3 ion in the solution is 122·14 ohm⁻¹ cm², calculate the transport number of Na⁺ ion in the solution.
 - variation equivalent conductances of KCl and the Represent (b) CH₃COOH with dilution graphically and give an explanation for such variation.
 - Describe briefly Wien effect and Debye-Falkenhagen effect.

8P/683

(Turn Over)

3

3

- (c) (i) State and explain Kohlrausch's law of independent migration of ions.
 - (ii) Calculate the equivalent and molar conductances of aqueous BaSO₄ solution at infinite dilution. Given,

$$^{\circ}_{\frac{1}{2}\text{Ba(NO_3)_2}} = 135.04 \times 10^{-4} \,\Omega^{-1} \,\text{m}^2 \,\text{equiv}^{-1}$$

$$^{\circ}_{\frac{1}{2}\text{H}_2\text{SO}_4} = 429 \cdot 60 \times 10^{-4} \ \Omega^{-1} \ \text{m}^2 \ \text{equiv}^{-1}$$

$$^{\circ}_{\text{HNO}_3} = 421 \cdot 24 \times 10^{-4} \,\Omega^{-1} \,\text{m}^2 \,\text{equiv}^{-1}$$

UNIT-III

5. Answer any two of the following questions:

5×2=10

- (a) (i) Discuss any two types of electrode used in galvanic cells.
 - (ii) Write the difference between electrode concentration cell and electrolytic concentration cell.
- (b) (i) Discuss how the pH of a solution can be measured with the help of a quinhydrone electrode.
 - (ii) Describe how the e.m.f. is fuel cell.

- (c) (i) Derive a relation between the electromotive force and the equilibrium constant of a cell reaction.
 - (ii) Aluminium oxide may be electrolysed at 1000 °C to furnish aluminium metal. The cathode reaction is

$$A1^{3+} + 3e^- \rightarrow A1$$

Calculate the amount of electricity to produce 5.12 kg of aluminium by this method.

2

3