Total No. of Printed Pages—8

4 SEM TDC MTH M 2

2018

(May)

MATHEMATICS

(Major)

Course: 402

(Linear Programming and Analysis—II)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP—A

(Linear Programming)

(Marks: 45)

 (a) The word _____ is used to describe the proportionate relationship of two or more variables in a linear programming model.

(Fill in the blank) 1

(Turn Over)

415

6

- What are the major assumptions for LPP?
- What is a feasibility region? Is it necessary that it should always be a convex set?
- Solve by graphical method:

Maximize $Z = 80x_1 + 120x_2$ subject to the constraints

$$x_1 + x_2 \le 9$$

$$x_1 \ge 2$$

$$x_2 \ge 3$$

$$20x_1 + 50x_2 \le 360$$
and
$$x_1, x_2 \ge 0$$

Or

Prove that the set of all convex combinations of a finite number of points is a convex set.

- Write down one advantage of two-phase
 - Form the 1st initial simplex table from the following LPP:

Maximize $Z = 3x_1 + 5x_2 + 4x_3$ subject to the constraints

$$2x_{1} + 3x_{2} \le 8$$

$$2x_{2} + 5x_{3} \le 10$$

$$3x_{1} + 2x_{2} + 4x_{3} \le 15$$
and
$$x_{1}, x_{2}, x_{3} \ge 0$$

Solve the following LP problem using the simplex method (any one):

> Maximize $Z = x_1 + x_2 + x_3$ subject to the constraints $4x_1 + 5x_2 + 3x_3 \le 15$ $10x_1 + 7x_2 + x_3 \le 12$ $x_1, x_2, x_3 \ge 0$

and

Minimize $Z = x_1 - 3x_2 + 3x_3$ (ii) subject to the constraints $3x_1 - x_2 + 2x_3 \le 7$ $2x_1 + 4x_2 \ge -12$ $-4x_1 + 3x_2 + 8x_3 \le 10$ $x_1, x_2, x_3 \ge 0$ and

Solve the following LPP by two-phase method:

> Maximize $Z = 3x_1 - x_2$ subject to the constraints

$$2x_1 + x_2 \ge 2$$

$$x_1 + 3x_2 \le 2$$

$$x_2 \le 4$$
and
$$x_1, x_2 \ge 0$$

(Continue

(Turn Over)

6

Or

Solve by Big-M method:

Minimize $Z = 2x_1 + x_2$ subject to the constraints

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$
and
$$x_1, x_2 \ge 0$$

3. (a) Fill in the blank:

If any of the constraints in the primal problem be a perfect equality, then the corresponding dual variable is _____.

- (b) State fundamental duality theorem.
- (c) Explain the primal-dual relationship.
- (d) Using the theory 'dual of the dual is the primal', verify this in the following problems:

Maximize $Z = 2x_1 + x_2 - x_3$ subject to the constraints

$$4x_{1} - x_{2} + x_{3} \le 4$$

$$x_{1} + 3x_{2} + 4x_{3} \le 8$$
and
$$x_{1}, x_{2}, x_{3} \ge 0$$

Or

Obtain the dual problem of the following primal LP problem:

Minimize $Z = x_1 - 3x_2 - 2x_3$ subject to the constraints

$$3x_1 - x_2 + 2x_3 \le 7$$

$$2x_1 - 4x_2 \ge 12$$

$$-4x_1 + 3x_2 + 8x_3 = 10$$
and $x_1, x_2 \ge 0$

 x_3 unrestricted in sign.

- 4. (a) What is the necessary and sufficient condition for the existence of a feasible solution to the transportation problem?
 - (b) What do you mean by non-degenerate basic feasible solution of a transportation problem?
 - (c) Obtain an optimal solution to the following transportation problem by MODI method:

			Warehouses		
				W ₃	Supply
		Wi	W_2	12	200
Factories	F_1	16	20 8 24 120	18 16 150	160
	F_2	14			90
	F_3	26			350
	Demand	180			

8P/516

(Continued

(Turn Over)

2

9

Write short notes on any two of the following: $4\frac{1}{2} \times 2^{-1}$

- (i) North-West corner method
- (ii) Least-cost method
- (iii) Vogel's approximation method

GROUP-B

[Analysis—II (Multiple Integral)]

(Marks: 35)

5. (a) Is the following trigonometric series the Fourier series?

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$$

(b) For a periodic function of period 2π , prove the following (any two): 2^{+2}

(i)
$$\int_{\alpha}^{\beta} f dx = \int_{\alpha + 2\pi}^{\beta + 2\pi} f dx$$

(ii)
$$\int_{-\pi}^{\pi} f dx = \int_{\alpha}^{\alpha + 2\pi} f dx$$

(iii)
$$\int_{-\pi}^{\pi} f(x) dx = \int_{-\pi}^{\pi} f(\gamma + x) dx$$

where α , β , γ being any numbers whatsoever.

(Continue

(c) If f is bounded and integrable in $[-\pi, \pi]$ and monotonic in $[-\delta, 0[$ and] 0, δ], where $0 < \delta < \pi$, then prove that

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n = \frac{f(0-) + f(0+)}{\pi} \int_0^{\infty} \frac{\sin x}{x} dx$$

where a_n , $n = 0, 1, 2, \cdots$ denotes the Fourier's coefficient of f.

Or

Find the Fourier series in $[0, \pi]$ for the function

$$f(x) = \begin{cases} \pi/3 & \text{, for } 0 < x < \pi/3 \\ 0 & \text{, for } \pi/3 < x < 2\pi/3 \\ -\pi/3 & \text{, for } 2\pi/3 < x < \pi \end{cases}$$

Also find the sum of the series when

$$x = \frac{2\pi}{3}$$

- 6. (a) Write one property of line integral.
 - (b) Evaluate the integral $\int_C (x^2 dx + xy dy)$, taken along the line segment from (1, 0) to (0, 1).
 - (c) Evaluate $\iint (x^2 + y) dx dy$, over the rectangle [0, 1; 0, 2].

8P/516

(Turn Over)

1

2

Or

Show that a bounded function f having a finite number of point of discontinuity on a rectangle R is integrable on R.

(d) With the help of Green's theorem, evaluate the line integral along C, where C is $x^2 + y^2 = a^2$ and the line integral is

$$\int_{C} (1 - x^{2}) y \, dx + (1 + y^{2}) x \, dy$$

Prove that $\iint_{R} \sqrt{|y-x^2|} dx dy = \frac{4}{3} + \frac{\pi}{2}$ where R = [-1, 1; 0, 2].

- 7. (a) Define surface integral of the 2nd type.
 - (b) Reduce a surface integral of first type to a double integral if the surface is represented by $Z = \psi(x, u)$.
 - (c) Compute the integral $\iiint_E xyz \, dx \, dy \, dz$ over a domain bounded by x = 0, y = 0, z = 0, x + y + z = 1.
 - (d) State and prove Stokes' theorem.

Or

Find the volume of the solid bounded above by the parabolic cylinder $Z = 4 - y^2$ and bounded below by the elliptic paraboloid $Z = x^2 + 3y^2$.
