4 SEM TDC PHY M 1

2018

(May)

PHYSICS

(Major)

Course: 401

(Mathematical Physics—I)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

1×6=6

- (a) The condition of solenoidal vector field is
 - (i) $\operatorname{grad} \overrightarrow{A} = 0$
 - (ii) $\operatorname{div} \overrightarrow{A} = 0$
 - (iii) curl $\overrightarrow{A} = 0$
 - (iv) curl \overrightarrow{A} = finite

- (b) Grad of $\left(\frac{1}{r}\right)$ is equal to
 - (i) $\frac{\vec{r}}{r^2}$
 - (ii) $-\frac{\vec{r}}{r^2}$
 - (iii) $-\frac{\vec{r}}{r^3}$
 - (iv) $\frac{xyz}{z^2}$
- Curvilinear coordinate system is (c)
 - (i) the most general form of coordinate
 - (ii) a special type of coordinate system
 - (iii) a mixture of both (i) and (ii)
 - (iv) None of the above
- For a skew-Hermitian matrix, all the diagonal elements are
 - (i) zero
 - (ii) purely imaginary
 - (iii) either zero or purely imaginary
 - (iv) None of the above

- If $\lambda = 0$ is an eigenvalue of a square (e) matrix A, then
 - (i) $|A| \neq 0$
 - (ii) A is symmetric
 - (iii) A is skew-symmetric
 - (iv) A is singular
- Vectors are tensors of rank (f)

 - (ii) 1
 - (iii) 2
 - (iv) 3
- 2. Answer the following:

 $2 \times 5 = 10$

(a) If \vec{r} is the position vector, then prove that

$$\operatorname{grad} r^m = mr^{m-2} \overrightarrow{r}$$

- Find a unit normal vector to the surface $z^2 = (x^2 + y^2)$ at the point (1, 0, -1).
- Prove that the eigenvalues of a real (c) symmetric matrix are all real.

3

5

5

- (d) Evaluate the following:
 - (i) $\partial_q^P A^{qr}$
 - (ii) $\partial_q^P \partial_r^q$
- (e) What are geodesics? Define a null
- 3. (a) Express the Laplacian operator in any orthogonal curvilinear coordinate system.
 - (b) What do you mean by curl of a vector field? What is its physical significance?

 Define irrotational field.

 1+2+1=4
 - (c) At any point of the curve $x = 3\cos t$, (i) tangent
 - (i) tangent vector;
 - (ii) unit tangent vector;
 - (iii) normal vector;
 - (iv) unit normal vector. 1+1+1+1=

Or

For a position vector $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, show that—

- (i) $\operatorname{div} \frac{\overrightarrow{r}}{r^3} = 0;$
- (ii) $\operatorname{curl} \frac{\overrightarrow{r}}{r^3} = 0$.

(d) Show that

$$\vec{\nabla} \times (u \vec{v}) = u \vec{\nabla} \times \vec{v} + (\vec{\nabla} u) \times \vec{v}$$

Or

If $\vec{F} = 3xy\hat{i} - y^2\hat{j}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$, where

C is the curve in xy-plane, $y = 2x^2$ from (0, 0) to (1, 2).

- 4. (a) Prove that the geodesics of a spherical surface are great circles.
 - (b) Find the equation of the curve joining two points along which a particle is falling from rest under the influence of gravity travels from higher to the lower points in the least time.

Or

Find the shape of the curve of a given perimeter enclosing maximum area.

- 5. (a) Show that for a Hermitian matrix with two distinct eigenvalues, the eigenvectors are orthogonal.
- 2 8
- (Continue

(Turn Over)

Or

Verify whether the matrix

$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$

is orthogonal or not.

(b) Using Cayley-Hamilton theorem, find the inverse of

$$A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 0 & 3 \\ 3 & 1 & 2 \end{bmatrix}$$

(c) Find the eigenvalues and eigenvectors of the matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

6. (a) If a contravariant tensor of rank two is symmetric in one coordinate system, other coordinate systems.

(b) Show that the contraction of the outer product of the tensors A^p and B_q is invariant or scalar. Show that

$$\frac{\partial x^p}{\partial x^q} = \partial_q^p \qquad 2 + 2 = 4$$

(Continue