5 SEM TDC MTH M 4

2016

(November)

MATHEMATICS

(Major)

Course: 504

(Mechanics and Integral Transform)

Full Marks: 80

Pass Marks: 32 (Backlog)/24 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Mechanics)

(a) : Statics

(Marks : 25)

(a) Write to which a system of forces acting at different points of a rigid body can be reduced.

(b) Define wrench.

(Turn Over)

1

2

P7/182

2

6

1

6

Find the necessary and (c) sufficient conditions for equilibrium of a rigid body.

Or

Find the equation of the central axis of a system of forces acting on a rigid body.

- Define axis of catenary. 2. (a)
 - (b) Write the height of the centre of gravity of a body for stable equilibrium.
 - Establish the relation between x and sin a common catenary.
 - Show that the total virtual work done by tensions of an inextensible string is zero.

Or

Five weightless rods of equal length are joined together to form a rhombus ABCD with one diagonal BD. If a weight w is attached to C and the system be suspended from A, show that there is a thrust in BD equal to $\frac{w}{\sqrt{3}}$.

State and prove the principle of virtual work for a system of coplanar forces acting at different points of a rigid body.

Or

P7/182

Derive the equation $s = c \tan \psi$ common catenary.

(b) : Dynamics

(Marks : 25)

- 3. (a) Let v = ft. Show that the acceleration f is constant.
 - Find the components of velocity along and perpendicular to the radius vector of a particle moving in a plane curve.

Or

Let a particle move in a straight line such that its acceleration is always directed towards a fixed point in the line and is proportional to the distance of the particle from the fixed point. Find the equation of the path of the particle.

- Write to which velocity of a particle at (a) any point in a central force varies.
 - A particle moves in a plane with an acceleration which is always directed to a fixed point in the plane. Discuss the motion.

Or

A particle is falling under gravity in a medium whose resistance varies as the velocity. Find the distance at any instant of time.

(Continued

(Turn Over)

- 5. (a) Write the moment of inertia of mass mwhose coordinates are (x, y, z) with respect to x-axis.
 - Define momental ellipsoid of a body.
 - Write the effective forces on a particle (c) along the tangent and normal.
 - Find the moment of inertia of a rectangular lamina about a line through its centre and parallel to one of its edges.

red to ston Or

Prove the theorem of perpendicular axes of moment of inertia.

GROUP-B

(Integral Transform) (Marks: 30)

Write the value of the following: 1+1+1=3

- (i) $L\{t^2\}$
- (ii) $L\{\cos 2t\}$
- (iii) $L\{\sin^2 t\}$

Find $L\{\cosh 2x\}$.

Find $L\{t^2\cos at\}$.

Or

Find $L\{\sinh at \sin at\}$.

7. (a) Write the value of $L^{-1}\left\{\frac{1}{s^2+9}\right\}$.

(b) Find:

(i)
$$L^{-1}\left\{\frac{1}{(s-4)^2}\right\}$$

(ii)
$$L^{-1}\left\{\frac{s+4}{(s+4)^2+4}\right\}$$

P7/182

(Continued

(Turn Over)

2+2=4

3

65

(c) Find $L^{-1} \left\{ \frac{s}{(s^2 + a^2)^2} \right\}$.

Find
$$L^{-1}\left\{\frac{s-2}{s^2-2s+5}\right\}$$
.

8. (a) If y = y(x, t), then write the value of $L\left\{\frac{\partial y}{\partial x}\right\}$.

Solve any two of the following using Laplace transform:

(i)
$$(D^2 + 25)y = 10\cos 5t$$
,

$$y(0) = 2, y'(0) = 0, \left(D = \frac{d}{dt}\right)$$

(ii)
$$(D^2 + 9)y = 6\cos 3t$$
, $y(0) = 2$, $y'(0) = 0$

(iii)
$$(D^2 + 2D + 5)y = e^{-t} \sin t$$
,

$$y(0) = 3$$
, $y'(0) = 1$

(c) Solve
$$\frac{\partial y}{\partial t} = \frac{\partial^2 y}{\partial x^2}$$
, if $y(x, 0) = 3\sin 2\pi x$, $y(0, t) = 0$, $y(1, t) = 0$

Or

Solve:

$$(D-2)x-(D+1)y=6e^{3t}$$

$$(2D-3)x+(D-3)y=6e^{3t}$$

$$x(0)=3, y(0)=0$$

P7/182

(Continued 3500/182

5 SEM TDC MTH M 4