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(¢) The value of a, in the Fourier series of
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Find the valye of @, in the Fourier seri€s
of f(x) in the interval (-m, m), where

Jlx) =

T["f'x, when i g 1)
=T —-Xx, when D ws it

Prove that P2m X

u) & ‘P2m 0-1)

Express the integral | = r dx in

(1 +x)°

t‘a and gamma functions and
its valye.

Using Cauchy’s
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integral formula
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(5)
Prove that
(2n+1)xpr1(x)=(n+1)Pn+l(x)+nPn—-1(x) 4
Or

olynomial P, (W) is

Prove that Legendre p
| —ophs R E

the coefficient of h? in
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ulx, y+ivlx, y) is
aiied ( then u and v

analytic in a doma.m D, =i 4
satisfy v2u =0 and vy =

tion
Prove that if f(2) is an analytic func

on and within the closed contourdg Eh;
value of f(2) at 2 point z=§ insl
given by
§ fla dz i
& =5
llowing :
Answer any two from the fo 510
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(i) Show that the tnanglez w e
vertices are the polllnéz :cll;mg;eral .
Argand diagram W!
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prove that
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(i) Obtain the expansion

f@ = fla+2]2=a (§_+_a_) z-a® ., z_+3)

E:.__)_s_ (5)( z+a ]
e (_2__]+

and determjpe its range of validity.
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(d) State and prove Parseval’s theorem.
Or
Obtain the Fourier series for a
triangular wave given by
y=0 at =l
y=0 at &= T
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