5 SEM TDC CHM M 7 (N/O)

2017

(November)

CHEMISTRY

(Major)

Course: 507

(Symmetry and Quantum Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48

Pass Marks: 14

Time: 2 hours

1. Select the correct answer from the following: $1 \times 5 = 5$

The quantum mechanical operator for (a) kinetic energy is

(i)
$$-\frac{h^2}{8\pi^2 m} \nabla^2$$
 (ii) $\frac{h}{2\pi i} \nabla$

(ii)
$$\frac{h}{2\pi i}\nabla$$

(iii)
$$\frac{h}{2\pi i} \frac{d}{dx}$$

- (b) A particle is moving in a 1-D box, N_n is the number of nodes in a state with quantum number n. The ratio of $N_{n=2}:N_{n=1}$ has a value
 - (i) 1
 - (ii) 2
 - (iii) 3
 - (iv) ∞
- (c) The energy required to excite (to first excited state) a particle of mass m confined in a length l is
 - (i) $\frac{3h^2}{8ml^2}$
 - (ii) $\frac{h^2}{8ml^2}$
 - (iii) O
 - (iv) h^2
- (d) The eigenvalue of the function $\psi = 8e^{4x}$ for the operator $\frac{d^2}{dx^2}$ is
 - (i) 16
 - (ii) 32
 - (iii) 8
 - (iv) 4

- (e) The point group of NH3 is
 - (i) T_d
 - (ii) D_{2h}
 - (iii) C_{2v}
 - (iv) C_{3v}
- 2. Answer any *five* questions from the following:
 - (a) What is the matrix representation of rotation-reflection axis (S_n) in symmetry?
 - (b) Briefly describe Compton effect.
 - (c) Distinguish bonding molecular orbitals from antibonding molecular orbitals.
 - (d) Show that the functions $\psi_1 = \left(\frac{1}{2\pi}\right)^{\frac{1}{2}}$ and $\psi_2 = \left(\frac{1}{\pi}\right)^{\frac{1}{2}}\cos x$, in the interval x = 0 to $x = 2\pi$, are orthogonal to each other.
 - (e) Hermitian operators have real eigenvalues. Explain.
 - (f) Show that the energy levels in a simple harmonic oscillator are equally spaced.

8P/398

(Turn Over)

- 3. Answer any three questions from the following: 3×3
 - Write the symmetry elements and point groups of the following:
 - (i) CHCl₃
 - (ii) NH3
 - (iii) PC15
 - Construct the character table for $C_{2\nu}$ point group.
 - What are dihedral planes of symmetry? Explain with example. 2+1
 - Distinguish Abelian groups from non-Abelian groups by taking a suitable example.

UNIT-II

Answer any two questions:

9×2=

4. (a) A wave function is described $\psi(\theta) = \sin \theta$, where θ can continuously from 0 to 2π . Show whether it is normalized or not. If it is not, then find the normalizing factor.

Show that $\psi = \sin(k_1 x) \sin(k_2 y) \sin(k_3 z)$ is an eigenfunction of ∇^2 . What is the 2+1=3eigenvalue?

- Verify that the operator ∇^2 is linear. 2
- Schrödinger's wave equation 5. (a) Solve freely in particle moving for the Find one-dimensional box. eigenfunction and energy also.
 - A particle of mass m is confined in a (b) one-dimensional box of length a. Calculate the probability of finding the particle in the region $0 \le x \le \frac{a}{4}$. What is the limiting probability when $n \to \infty$? 3+1=4
- Write the rotator. 6. (a) rigid Define Schrödinger's wave equation for this system and separate the variables. 1+4=5
 - Sketch the variation of radial probability (b) density against the distance from the nucleus for 2s state for hydrogen atom.

8P/398

(Continue

2+2

8P/398

(Turn Over)

2

5

(c) Determine the degree of degeneracy of the energy level $\frac{6h^2}{8ma^2}$ of a particle in a cubical box.

UNIT-III

7. (a) Explain the valence bond treatment for H₂ molecule.

Or

Compare the MO and VB treatment of hydrogen molecule in the ground state.

(b) Write the MO configuration of CN⁻ ion and predict its magnetic character.