5 SEM TDC MTH M 1

2017

(November)

MATHEMATICS

(Major)

Course: 501

Logic and Combinatorics, and Analysis—III)

Full Marks: 80 Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

(A) Logic and Combinatorics

(Marks : 35)

1. (a) (i) What do you mean by truth value of 1 a proposition? 1 State the law of syllogism. (ii) down the contrapositive (b) (i) Write 1 statement of $p \rightarrow q$. If the value of $p \rightarrow q$ is T; what can (ii) 2

ees\48

be said about the value $p \land q \leftrightarrow p \lor q$? (Turn Over)

- (c) (i) Express the statement $(p \lor \neg q) \to p \land r$ in terms of \lor and \neg only.
 - (ii) Prove that every truth function can be generated by ~, ∧ and ∨ only.

Or

Prove that if $\models A$ and $\models A \rightarrow B$, then $\models B$.

- 2. (a) Define a term.
 - (b) Translate the following in symbols: 1×2
 - (i) Some rationals are real.
 - (ii) All women who are lawyers admire some judge.
 - (c) Find a formal derivation of $A \rightarrow (B \rightarrow C)$, $\sim D \lor A$, $B \models D \rightarrow C$
 - (d) Prove that $\forall x (P(x) \rightarrow S(x))$ is the consequence of the following premises:
 - (i) $\forall x (P(x) \to \mathbb{Q}(x))$
 - (ii) $\forall x (\mathbb{Q}(x) \to S(x))$

Or

Derive mathematically the following (any one):

- (i) Every member of the committee is wealthy and a republican. Some committee members are old. Therefore, there are some old republicans.
- (ii) All rational numbers are real numbers. Some rationals are integers. Therefore, some real numbers are integers.
- 3. (a) State multinational theorem.
 - (b) In an election, the number of candidates is one more than the number of vacancies. If a voter can vote in 30 different ways, find the number of candidates.

Or

Find the coefficient of $x^3y^3z^2$ in $(2x-3y+5z)^8$.

(c) State and prove the principle of inclusion-exclusion.

8P/399

(Continue

(Turn Over)

1

Find the number of solutions in integers of the equation a+b+c+d=17, where $1 \le a \le 3$, $2 \le b \le 4$, $3 \le c \le 5$, $4 \le d \le 6$.

- 4. (a) State the pigeonhole principle.
 - (b) Show that in any set of eleven integers, there are two whose difference is divisible by 10.
 - (c) Find the binomial and exponential generating functions for the sequence 2, 2, 2,

Or

Find the number of solutions of $e_1 + e_2 + e_3 = 17$, where e_1 , e_2 and e_3 are non-negative integers with $2 \le e_1 \le 5$, $3 \le e_2 \le 6$, $4 \le e_3 \le 7$.

(B) Analysis—III (Complex Analysis)

(Marks: 45)

- 5. (a) What do you mean by a multiple point?
 - (b) Derive the polar form of Cauchy-Riemann equation.
 - (c) Prove that $u = y^3 3x^2y$ is a harmonic function. Determine its harmonic conjugate and find the corresponding analytic function f(z) in terms of z.

Or

If
$$u+v = \frac{2\sin 2x}{e^{2y} + e^{-2y} - 2\cos 2x}$$
 and

f(z) = u + iv is an analytic function of z = x + iy, find f(z) in terms of z.

- 6. (a) Define Jordan arc.
 - (b) Evaluate

$$\int_C (z^2 + 3z + 2) dz$$

where C is the arc of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ between the points (0, 0) and $(\pi a, 2a)$.

(c) State and prove Cauchy's integral theorem.

ees\48

(Continue

8P/399

(Turn Over)

1

3

- (d) Answer the following (any one):
 - (i) Evaluate

$$\int_C \frac{e^{3z}}{z+i} dz$$

where C is the circle |z+1+i|=2.

(ii) Evaluate

$$\int_C \frac{z^2 - 4}{z(z^2 + 9)} dz$$

where C is the circle |z|=1.

- 7. (a) State and prove Taylor's series. 1+5=6
 - (b) Expand

$$f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$$

where |z| > 2.

- 8. (a) Define essential singularity of an analytic function f(z).
 - (b) Discuss the singularity of

$$f(z) = \frac{z^2 + 4}{e^z}$$

at $z = \infty$.

.

1

(Continued)

(c) Evaluate the following (any two): $5\times2=10$

(i)
$$\int_0^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta$$

(ii)
$$\int_0^{\pi} \frac{\cos 2\theta}{1 - 2a\cos \theta + a^2} d\theta$$

(iii)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)^3}$$

(iv)
$$\int_0^\infty \frac{\cos mx}{a^2 + x^2} dx$$
; $m \ge 0$

**