5 SEM TDC MTH M 3

All Find the equation

2016

(November)

MATHEMATICS

(Major)

Course: 503

(Fluid Mechanics)

Full Marks: 80

Pass Marks: 32 (Backlog) / 24 (2014 onwards) Time: 3 hours

The figures in the margin indicate full marks for the questions

(A) Hydrodynamics

(Marks: 35)

- Define ideal fluid. 1. (a)
 - State whether True or False: 1 A path line is the curve along which a (b)

particular fluid particle travels during its motion.

P7/181

(Turn Over)

- Find the equation of the streamlines for the flow $\vec{q} = -\hat{i}(3y^2) - \hat{j}(6x)$ at the point (1, 1).
- Determine the acceleration at the point (2, 1, 3) at t = 0.5 if u = yz + t, v = xz - tand w = xy.
- 2. Deduce the equation of continuity in cylindrical coordinates.

Or

Show that

$$u = \frac{-2xyz}{(x^2 + y^2)^2}$$
, $v = \frac{(x^2 - y^2)z}{(x^2 + y^2)^2}$ and $w = \frac{y}{x^2 + y^2}$

are the velocity components of a possible liquid motion. Is this motion irrotational?

- 3. (a) Choose the correct answer: Euler's equation of motion in x direction
 - (i) $\frac{Du}{Dt} = X \frac{1}{0} \frac{\partial p}{\partial x}$
 - (ii) $\frac{Du}{Dt} = X + \frac{1}{o} \frac{\partial p}{\partial x}$
 - (iii) $\frac{\partial u}{\partial t} = X \frac{1}{0} \frac{\partial p}{\partial x}$
 - (iv) $\frac{\partial u}{\partial t} = X + \frac{1}{2} \frac{\partial p}{\partial x}$

If the motion of an ideal fluid, for which density is a function of pressure only, is steady and the external forces are conservative, then prove that there exists a family of surfaces which contain the streamlines and vortex lines.

Or

a steady motion of inviscid incompressible fluid under conservative forces, show that the vorticity and velocity a satisfies

 $(\vec{q} \cdot \nabla) \cdot \vec{\omega} = (\vec{\omega} \cdot \nabla) \cdot \vec{q}$

State and prove Kelvin's circulation theorem.

Or

A portion of homogeneous fluid is contained between two concentric spheres of radii A and a, and is attracted towards their centre by a force varying inversely as the square of the distance. The inner spherical surface is suddenly annihilated, and when the radii of inner and outer surface of the fluid are r and R, the fluid impinges on a solid ball Concentric with these surfaces. Prove that the impulsive pressure at any point of the ball for different values of R and r varies as

 $\left\{ (\alpha^2 - r^2 - A^2 + R^2) \left(\frac{1}{r} - \frac{1}{R} \right) \right\}^{\frac{1}{2}}$ 6

P7/181

(Continued)

(Turn Over)

56

5

5

- Define circulation. 5. (a)
 - Answer either (i) or [(ii) and (iii)]
 - (i) Show that if the velocity potential of an irrotational motion is equal to

$$A(x^2 + y^2 + z^2)^{-\frac{3}{2}} \left(z \tan^{-1} \frac{y}{x}\right)$$

the lines of flow lie on the family of surfaces

$$x^{2} + y^{2} + z^{2} = k^{\frac{2}{3}}(x^{2} + y^{2})^{\frac{2}{3}}$$
Or

- (ii) Prove that there cannot be two different forms of irrotational motion for a given confined mass of incompressible liquid inviscid whose boundaries are subject to the given impulses.
- (iii) If Σ is the solid boundary of a large spherical surface of radius R, containing fluid in motion and also enclosing one or more closed surfaces, then show that the mean value of velocity potential Q on Σ is of the form

$$Q = \left(\frac{M}{R}\right) + C$$

where M, C are constants, provided that the fluid extends to infinity and is at rest there.

(Continued)

(B) Hydrostatics

(Marks: 45)

- Define specific gravity of a substance. (a)
 - Prove that the densities at two points in a fluid at rest under gravity and in the same horizontal plane are equal.
 - Prove that the surfaces of equal pressure are intersected orthogonally by the lines of force.
- A tube in the form of a parabola held 7. (a) with its vertex downwards and axis vertical, is filled with different liquids of densities δ and δ' . If the distance of the free surface of the liquids from the focus be r and r' respectively, show that the distance of their common surface from the focus is

$$\frac{r\delta - r'\delta'}{\delta - \delta'}$$

If the components parallel to the axes of the forces acting on an element of fluid at (x, y, z) be proportional to

at
$$(x, y, z)$$
 be proportional to $y^2 + 2\lambda yz + z^2$, $z^2 + 2\mu zx + x^2$ and $x^2 + 2\nu xy + y^2$

show that if equilibrium be possible, then
$$2\lambda = 2\mu = 2\nu = 1$$
.

P7/181

(Turn Over)

- (b) Prove that the pressure at a depth z below the surface of a homogeneous liquid, at rest under gravity is $p = wz + \Pi$, where Π is the atmospheric pressure and w is the weight of unit volume of the liquid.
- 8. (a) Define centre of pressure.
 - (b) Prove that the whole pressure of a heavy homogeneous liquid on a plane area is equal to the product of the area and the pressure at its centre of gravity.
- 9. (a) Find the centre of pressure of a parallelogram immersed in a homogeneous liquid with one side in the free surface.

Or

A triangle ABC is immersed in a liquid, its plane being vertical and the side AB in the surface; if O be the centre of the circumscribed circle of ABC, prove that

Pressure on the $\triangle AOC$ Pressure on the $\triangle OCB$ $= \frac{\sin 2B}{\sin 2A}$

(b) A conical glass is filled with water and placed in an inverted position upon a table. Show that the resultant vertical two-thirds that on the table.

Or

Find the resultant horizontal thrust in an assigned horizontal direction on a curved surface immersed in a heavy homogeneous liquid.

6

4

5

10. (a) Fill in the blank:

If the ____ coincides with centre of gravity, the equilibrium is neutral.

- (b) A body floats partly immersed in one liquid and partly in another. Find the condition of equilibrium.
- (c) Define stable and unstable equilibrium.
- Prove that the tangent at any point of surface of buoyancy is parallel to the corresponding plane of floatation.

Or

A solid body consists of a right cone joined to hemisphere on the same base and floats with the spherical portion partly immersed. Prove that the greatest height of the cone consistent with stability is $\sqrt{3}$ times the radius of the base.
