5 SEM TDC MTH M 4

2017

(November)

MATHEMATICS

(Major)

Course: 504

(Mechanics and Integral Transform)

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Mechanics)

(a) : Statics

(Marks : 25)

1. (a) Define the following:

1+1+1=3

- (i) Central axis
- (ii) Pitch
- (iii) Wrench

^{8p}/402

(Turn Over.)

60

(b) Find the necessary and sufficient conditions for equilibrium of a rigid body.

Or

With usual meaning, show that the quantities (LX + MY + NZ) and $(X^2 + Y^2 + Z^2)$ are invariants for any given system of forces.

- 2. (a) Write two forces which may be omitted in forming the equation of virtual work.
 - (b) Determine the work done by tension or thrust of a light rod.

Or

In a common catenary, prove the following with usual meaning:

(i)
$$y^2 = c^2 + s^2$$

- (ii) $x = c\log(\sec \psi + \tan \psi)$
- (c) State and prove the principle of virtual work of a system of coplanar forces acting at different points of a rigid body.

(Continued)

(b) : Dynamics

(Marks : 25)

- 3. (a) Define frequency of a simple harmonic motion.
 - (b) The velocities of a particle along and perpendicular to the radius from a fixed origin are λr and $\mu\theta$. Find the path of the particle and components of acceleration along and perpendicular to the radius vector.

Or

Derive the equation of simple harmonic motion.

- 4. (a) Define central force.
 - (b) A particle describes the curve $r^n = a^n \cos n\theta$ under a force F to the pole. Find the law of force.

Or

A particle is describing an ellipse under a force to a pole. Find the law of force.

8p/402

(Turn Over)

8P/402

- 5. (a) Define product of inertia.
 - (b) Define impressed force.
 - (c) Write the effective forces on a particle along the tangent and normal.
 - (d) State and prove d'Alembert's principle.

Or

Find the moment of inertia of a uniform rectangular lamina about a line through its centre and perpendicular to its plane.

GROUP-B

(Integral Transform)

(Marks: 30)

- 6. (a) Write the value of the following: 1+1+1=3
 - (i) $L\{1\}$
 - (ii) $L\{e^{-t}\}$
 - (iii) $L\{\cos^2 2t\}$
 - (b) Find $L\{t^2e^{3t}\}.$

2

3

1

(c) Find $L\{t\sin^2 t\}$.

Or

If f(s) = L(F(t)), then show that

$$L\{F(at)\} = \frac{1}{a}f\left(\frac{s}{a}\right)$$

7. (a) Write the value of $L^{-1}\left\{\frac{1}{s+2}\right\}$.

80/400

8P/402

(Continued) 8

(Turn Over)

(i)
$$L^{-1}\left\{\frac{s-2}{s^2-4s+29}\right\}$$

(ii)
$$L^{-1}\left\{\frac{1}{(s-6)^2}\right\}$$

(c) Evaluate
$$L^{-1} \left\{ \log \frac{s+4}{s+2} \right\}$$
.

Or

Evaluate
$$L^{-1}\left\{\frac{1}{s(s+1)^2}\right\}$$
.

8. (a) Write the value of
$$L\left\{\frac{\partial^2 y}{\partial x^2}\right\}$$
.

(i)
$$y'' + 9y = \cos 2t$$
, if $y(0) = 1$, $y(\frac{\pi}{2}) = -1$

(ii)
$$y'' + y' = t^2 + 2t$$
, if $y(0) = 4$, $y'(0) = -2$

$$\frac{\partial y}{\partial x} = 2 \frac{\partial y}{\partial t} + y, \ y(x, 0) = 6e^{-3x}$$

Or

Solve:

2+2=4

$$(D^2 + 2)x - Dy = 1$$

$$Dx + (D^2 + 2)y = 0; D \equiv \frac{d}{dt},$$

with t > 0; x = 0, Dx = 0, y = 0, Dy = 0, when t = 0. Here x and y are functions of t.

4×2=8