otal No. of Printed Pages—7

5 SEM TDC PHY M 1

2017

(November)

PHYSICS

(Major)

Course: 501

(Mathematical Physics)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer from the following 1×6=6 (any six):

(a) The residue of function $f(z) = \frac{z^2}{z^2 + 4}$ at

$$z = 2i$$
 is

(i)
$$e^{i\pi/2}$$

(iii)
$$e^{3i\pi/2}$$

(iv) None of the above

8P/391

(Turn Over)

(b) If $P_n(x)$ be the Legendre polynomial, then $P'_n(1)$ is equal to

- (i) O
- (ii) 1
- (iii) $\frac{n(n+1)}{2}$
- (iv) $\frac{2n}{n+1}$

(c) The sum of the series

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 is

- (i) $\frac{\pi^2}{8}$
- (ii) $\frac{\pi^2}{12}$
- (iii) $\frac{\pi^2}{6}$
- (iv) $\frac{\pi^2}{10}$

For an even function, the Fourier coefficients are

- (i) $a_0 = 0$, $a_n \neq 0$, $b_n = 0$
- (ii) $a_0 = 0$, $a_n \neq 0$, $b_n \neq 0$
- (iii) $a_0 \neq 0$, $a_n \neq 0$, $b_n = 0$
- (iv) $a_0 \neq 0$, $a_n = 0$, $b_n \neq 0$

What is the value of integral of z over the lower half of the circle |z|=1?

- (ii) -iπ
- (iii) Zero
- (iv) None of the above

The differential equation (f) $(y^2e^{xy^2}+6x)dx+(2xye^{xy^2}-4y)dy=0$ is

- (i) linear homogeneous and exact
- (ii) non-linear homogeneous and exact
- (iii) non-linear, non-homogeneous and exact
- (iv) non-linear, non-homogeneous and in-exact

The coefficient of the term $(z-1)^2$ in the (g)Taylor's series of the function

$$f(z) = \frac{1}{z^2 - 9}$$

about the point z=1 is

- (i) $-\frac{1}{32}$
- (ii) $\frac{1}{32}$
- (iii) $-\frac{3}{128}$ (iv) $\frac{3}{128}$

- 2. Answer any six of the following:
 - (a) Expand in Fourier series the function f(x) = x for $0 < x < 2\pi$.

2×6=

- (b) Show that $f(z) = z^2$ is analytic.
- Evaluate the integral

$$\int_C \frac{e^z(z^2+1)}{(z-1)^2} dz$$

where C is the circle |z|=2.

- Show that $\Gamma(n+1) = n\Gamma(n)$.
- Show that

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$

(f) Solve

$$\frac{d^2y}{dx^2} + 9y = 0$$

given y = 3, $\frac{dy}{dx} = 0$, where x = 0.

- What are Fourier sine and cosine
- 3. (a) Solve the differential equation Frobenius method (roots by not differing by an integer)

$$9x(1-x)\frac{d^2y}{dx^2} - 12\frac{dy}{dx} + 4y = 0$$

Or

Find the solutions of the equation

$$\frac{d^2y}{dx^2} + \omega^2 y = 0$$

using Frobenius method.

Prove that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. 4

Or

Prove that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$

Write the integral (c)

$$\int_0^1 \frac{x^3}{\sqrt{1-x^2}} \, dx$$

in the form of a beta function and hence evaluate it.

Or

Establish the property for |x| is large erfc(x) = 1 - erf(c)

Prove that (d)

$$\int_{-1}^{+1} P_m(x) P_n(x) dx = \frac{2}{2n+1} \delta_{mn}$$
 5

Solve the following equation: 4

$$\frac{dy}{dx} = \frac{x+y+3}{x-y-5}$$

5

4

4

4

4. (a) Prove by contour integration method:

$$\int_0^{\pi} \frac{ad\theta}{a^2 + \sin^2 \theta} = \frac{\pi}{\sqrt{1 + a^2}}, \ a > 0$$

- (b) Show that for an odd function the Fourier series is a sine series.
- (c) Find Taylor's expansion of

$$f(z) = \frac{2z^3 + 1}{z^2 + z}$$

about the point z=1.

Or

Expand
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 for $1 < |z| < 2$.

5. (a) A periodic function f(x) with period 2π is defined as $f(x) = x^2$, $(-\pi \le x \le \pi)$. Expand f(x) in a Fourier series and hence show that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

(b) A square wave is given by

$$f(x) = \begin{cases} 0, & \text{for } -\pi < x < 0 \\ h, & \text{for } 0 \le x < \pi \end{cases}$$

Show that

$$f(x) = \frac{h}{2} + \frac{2h}{\pi} \sum_{n=1}^{\infty} \frac{\sin nx}{n} \text{ (for } n, \text{ odd)}$$

(7)

Or

Write down the Fourier series in complex form. Establish the relationship between the coefficients of the complex form with a_0 , a_n and b_n .

(c) Give the statements of Cauchy's integral theorem and residue theorem. 1+1=2

* * *