5 SEM TDC CHM M 5 (N/O)

2018

(November)

CHEMISTRY

(Major)

Course: 505

(Organic Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48 Pass Marks: 14

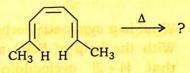
Time: 2 hours

1. Select the correct answer from the following: $1 \times 5 = 5$

- Thermal (conrotatory) ring opening of (a) trans-3,4-dimethyl cyclobutene gives
 - (i) Z,Z-hexa-2,4-diene
 - (ii) E, E-hexa-2,4-diene
 - (iii) E,Z-hexa-2,4-diene
 - (iv) Z, E-hexa-2, 4-diene

The product of the reaction

 $C_6H_{12}O_6$ (glucose) $\frac{1) \text{ HCN}}{2) H_3O^+}$


is

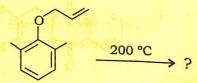
- D-glucitol
- (ii) D-gluconic acid
- (iii) n-heptanoic acid
- (iv) 2-methyl heptanoic acid
- α-Terpineol is a
 - (i) diterpenoid
 - (ii) monoterpenoid
 - (iii) sesquiterpenoid
 - (iv) terpenoid
- Artimisinin is
 - (i) an antimalarial drug
 - (ii) an antibacterial drug
 - (iii) a sulpha drug
 - (iv) an antiseptic
- 2-Acetoxy benzoic acid is
 - (i) antiseptic
 - (ii) aspirin
 - (iii) paracetamol
 - (iv) disinfectant

UNIT-I

Answer any one question

- MO 1,3-butadiene the of 2. (a) Draw indicating HOMO in the ground and excited states.
 - Predict the stereochemical outcome following electrocyclic from the reaction:

2


1

2

(Turn Over)

2E, 4Z, 6E octatriene

- The Diels-Alder reaction is a concerted (c) [4+2] process. It proceeds with retention of configuration of both the diene and the dienophile. Explain with suitable examples. 1+1=2
- Complete the following reaction and suggest the mechanism:

P9/374

3. (a) Predict the stereochemical products obtained in the following electrocyclic reactions:

(i)
$$HH$$
 CH_3 hv $disrotatory$?

(ii)
$$CH_3 H CH_3 H \xrightarrow{hv}$$
 ?

- (b) What is a symmetry forbidden reaction?
 With the help of FMO approach, show that [4+2] cycloaddition is photochemically forbidden.

 1+2=3
- (c) Complete the following reaction:

$$Me$$
 A
 Me
 A
 A

(d) What diene and dienophile would you employ to synthesize the following compound?

UNIT-II

Answer any one question

- **4.** (a) Sketch the stable conformational structure of α-D-mannopyranose.
 - (b) How would you methylate the —OH groups of α-D-glucopyranose other than enomeric —OH group?
 - (c) How is the configuration of D-glucose determined? Explain.

Discuss the pyranose structure of D-glucose.

- (d) Define epimerization. Explain it considering the conversion of D-mannose to D-glucose. 1+2=3
- (e) What happens when D-erythrose is subjected to Ruff degradation? 2
- 5. (a) Convert D-fructose to D-glucose and D-mannose.
 - (b) Complete the following reactions: 3

D-Erythrulose HCN Epimeric cyanohydrin

1) Ba(OH)₂ \rightarrow Epimeric polyhydroxy \rightarrow 2) H₂SO₄ carboxylic acids

2-Methyl substituted carboxylic acid

P9/374

(Turn Over)

1

2

3

2

- (c) How would you establish the ring structure of D-glucose?
- (d) Glucose and fructose give same osazone. Explain giving reactions.

UNIT-III

Answer any one question

- 6. (a) Draw the structure of the following (any one):
 - (i) dADP
 - (ii) ATP
 - (b) Synthesize one important purine present in both DNA and RNA.
 - (c) Identify the base and monosaccharide used to form the following nucleoside and then name it:

- (d) What is stop codon? Give example.
- (e) Write, how the DNA molecule is replicated during cell division.

7. (a) What are coenzymes? Discuss their functions. 1+1=2

(b) Write in brief about the Watson and Crick double-helix model of DNA.

(c) What do you mean by the terms 'transcription' and 'translation'? 2

3

(d) How are the following compounds related?

Adenosine and AMP

UNIT-IV

8. (a) Write in brief about the medicinal importance of curcumin.

(b) Synthesize chloroquine using the following sequential steps: 1+1+1=3

Step I : AAE to 5-diethyl amino 2-aminopentane
Step II : *m*-Chloroaniline + Oxalyl acetic ester → 4,7-dichloroquinoline
Step III : 4,7-dichloroquinoline + 5-diethyl amino, 2-amino pentane → Chloroquine

Or

Give the preparation of the following: $1\frac{1}{2} \times 2=3$

- (i) Sulphaguanidine from acetanilide
- (ii) Ibuprofen by using green method

(Turn Over)

P9/374

(Continue

9/374

- (c) What are antipyretics? Synthesize a drug which is used to bring down body temperature during fever.
- (d) Write down the laboratory synthesis of chloramphenicol.

UNIT-V

9. (a) Synthesize citral starting from acetylene and acetone.

Or

Complete the following oxidative degradation reactions of α-terpeniol:

 α -Terpineol $\xrightarrow{1\% \text{ alk.}}$ A trihydroxy $\xrightarrow{\text{CrO}_3}$ compound $\xrightarrow{\text{C}_{10}}$

Ketohydroxy acid \longrightarrow Ketolactone warm, alk. KMn O_{4} C_{10}

Terpenylic acid $\xrightarrow{\text{KMnO}_4}$ Terebic acid $+ \text{CH}_3C^{00}$ C_7

- (b) What are geraniol and nerol?
- (c) Find out A and B in the following reaction:

P9/374

(Continued

(Old Course)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

- 1. Select the correct answer/Answer the following:
 - (a) The product obtained during the thermal reaction

$$CH_3 H H CH_3 \xrightarrow{\Delta}$$
 ?

2E, 4Z, 6E octatriene

is

P9/374

(Turn Over)