5 SEM TDC ZOO M 1

2018

(November)

ZOOLOGY

(Major)

Course: 501

(Genetics and Evolution)

Full Marks: 48
Pass Marks: 19/14

Time: 2 hours

The figures in the margin indicate full marks for the questions

Fill in words :	the blanks	with	appropria	te 1×4=4
sing	portion of de-polypeptid	DNA s	specifying n is term	a ed
that	change of changes omosome is	the s	tructure	of
(iii) The carr	set of geried by all ulation which	enetic	information of	on

- (iv) The number of linkage group in man is 34
- (b) Answer any four of the following questions very briefly: $2 \times 4 = 8$
 - (i) Distinguish between gene and allele with examples.
 - (ii) Explain why Mendel's principle of segregation is universal.
 - (iii) What is epistasis? Give an example.
 - (iv) Under what conditions the gene frequency in the individuals of a population remains constant?
 - (v) What are the three basic factors those are responsible for genetic variation in modern synthetic theory?
- 2. Define complete dominance and explain it with an example that it is not always true.

2+5=7

(Continued

Or

What is crossing-over? Describe crossing-over can be used to measure the relative distances between the genes in a 2+5=7 3. What is genome? Write an account on fine structure of gene. 2+5=7

Or

What is inborn error? Explain some inborn errors in metabolism. 1+6=7

4. What is adaptive radiation? Explain with an example. 2+5=7

Or

Explain divergent and convergent evolutions.

5. What is fossil? Write a note on the process of fossilization. 2+5=7

Or

What is variation? Describe the different types of variations found in living organisms.

1+6=7

- 6. Write short notes on any two of the following: $4 \times 2 = 8$
 - (a) Neo-Darwinism
 - Speciation
 - Human Genome Project
 - (d) Cytoplasmic Inheritance

P9-4000/275