5 SEM TDC CHM M 3 (N/O)

2018

(November)

CHEMISTRY

(Major)

Course: 503

(Inorganic Chemistry—II)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48 Pass Marks: 14

Time: 2 hours

- Select the correct answer from the following: 1. $1 \times 5 = 5$

 - The oxidation states of metal atoms in (a) halide and oxide clusters have
 - low formal oxidation states +1, 0, -1 (i)
 - high formal oxidation states +2 to +3 (ii)
 - low formal oxidation states +3 to +5 (iii)
 - None of the above (iv)

- (b) Bromocresol is an example of
 - redox indicator
 - neutralization indicator
 - metal ion indicator (iii)
 - (iv) adsorption indicator
- (c) Co(CO)3 is isolobal with
 - (i) CH₂⁺
 - CH₂
 - (iii) CH
 - (iv) CH3
- (d) C₅₄H₄₅ClP₃Rh is
 - (i) Vaska's compound
 - Wilkinson's catalyst
 - (iii) Cupferron
 - (iv) Zeise's salt
- (e) 4-(4-nitrophenylazo) resorcinol is mainly used for determining the presence of
 - Ca in solution
 - (ii) Mg in solution
 - Na in solution
 - (iv) Li in solution

2. Answer the following questions:

- (a) Outline the conditions necessary for isolobality of two molecular fragments.
- (b) Give an example of reaction in which HCo(CO)4 is used as catalyst.
- (c) Give the classification of metal cluster compounds.
- (d) Write the preparation of a cobalt nitrosyl compound.

3. Answer any three questions : $3 \times 3 = 9$

(a) Define oxidative addition and reductive elimination reactions with examples.

11/2+11/2=3

 $2 \times 4 = 8$

- reaction path (b) Draw the hydrogenation of olefin with the help of Wilkinson's catalyst.
- What is 18-electron rule? Examine the 18-electron rule in the following compounds: $1 + \frac{1}{2} \times 4 = 3$
 - Co2(CO)8
 - Mn(CO)6 (ii)
 - (iii) Fe₂(CO)₉
 - (iv) $Fe(CO)_2$ (αC_5H_5) (πC_5H_5)
- (d) Discuss the structure and bonding of anion of Zeise's salt.

P9/373

P9/373

(Turn Over)

4. Answer the following questions:

4×2=

- (a) Explain the structure and bonding of ferrocene. (Give emphasis on orbital diagram, orbital symmetry and energy.)
- Outline the PSEP theory.
 - (ii) Predict the structures of following clusters in the light of PSEP theory:
 - (1) $[Fe_4(CO)_{13}]^{2-}$
 - (2) $[Os_5(CO)_{16}]$

5. Answer any two questions:

3×2=

- (a) Outline the synthesis of a low-nuclearity carbonyl cluster. Discuss the structure of the cluster. 1+2=
- (b) What are nitrosyl complexes? Give the preparation of nitrosoferrous sulphate.
- (c) Give a common discussion for structure and bonding of metal compound. nitrosyl

6. Answer any two questions:

3×2=

- (a) Discuss about the nature and type of indicator used in the titration of
 - strong acid and weak base;
 - (ii) strong acid with strong base.
- (b) Define accuracy, precision and mean

(c) Analysis of a sample of CaCl2 gave the following percentage values for Ca content:

> 10.08, 10.12, 10.21, 10.16, 10.09 10.14, 10.18, 10.11, 10.14, 10.07

Calculate the standard deviation.

- (d) Write a note on adsorption indicator.
- 7. Discuss the uses of the following reagents in inorganic analysis (any three) : $2 \times 3 = 6$
 - (a) Magneson
 - (b) 1,10-phenanthroline
 - (c) 8-hydoxyquinoline
 - (d) Salicylaldoxime
 - (e) Dithizone

(Old Course)

Full Marks: 48 Pass Marks: 19

Time: 3 hours

1. Select the correct answer from the following:

 $1 \times 5 = 5$

(a) The total electron count of a cluster is 12n+2(n+1). The structure will be

(i) hypo

(ii) arachno

(iii) nido

(iv) closo

P9/373

(Turn Over)