Cotal No. of Printed Pages-6

6 SEM TDC CHM M 7

2016

(May)

CHEMISTRY

(Major)

Course: 607

(Spectroscopy)

Full Marks: 48
Pass Marks: 19

Time: 3 hours

The figures in the margin indicate full marks for the questions

Choose the correct option:

1×5=5

- (a) The internal energy of a molecule is its
 - (i) rotational energy
 - (ii) vibrational energy
 - (iii) translational energy
 - (iv) All of the above

- (b) The rotational spectra involve
 - (i) a very high energy change
 - (ii) small energy change
 - (iii) no energy change
 - (iv) None of the above
- (c) In the Raman spectrum, the middle line is called
 - (i) Raman line
 - (ii) Rayleigh line
 - (iii) functional group line
 - (iv) None of the above
- (d) Using a 60-MHz NMR machine, the difference in frequency between absorption by a proton in a compound and that by protons of TMS was found to be 430 Hz. The chemical shift in ppm will be
 - (i) 7·17
 - (ii) 7.71×10-6
 - (iii) 0.717
 - (iv) None of the above

- (e) The electronic spectra consist of
 - (i) a large number of absorption bands
 - (ii) a large number of closely packed lines
 - (iii) a large number of peaks
 - (iv) None of the above
- 2. Answer any five of the following: 2×5=10
 - (a) The nuclei ¹H and ¹³C are suitable for NMR investigation. Explain why.
 - (b) Calculate the precessional frequency of electrons in a 15000 G field. Given $g_e = 2.0$, $\mu_B = 9.273 \times 10^{-28} \text{ JG}^{-1}$.
 - (c) Discuss the term 'hot bands' in vibrational spectra.
 - (d) Stokes lines are more intense than anti-Stokes lines. Explain.
 - (e) Explain, why ethanol is a good solvent for UV-measurement but not for IR.
 - (f) Microwave studies are done only in gaseous state. Why?

16/621

(Turn Over)

3

1

3

2

2

1

UNIT—I

- Show that the lines in the rotational spectrum of a diatomic molecule are equispaced under rigid rotator approximation.
 - (b) The pure rotational spectrum of gaseous HCl contains a series of equally spaced lines separated bv 20.80 cm Calculate the bond length of H-C bond.

Unit—II

- Sketch the normal modes of vibration of a linear triatomic molecule AB2 and predict the IR active bands. Give reason in support of your answer.
 - The fundamental vibrational frequency of CO is 2140 cm⁻¹. Calculate the force constant of the molecule.
 - Discuss 'combination band' with one mornio trade de la competica del

UNIT—III

State and explain the rule of mutual exclusion with example.

P16/621

(b)	Explain,	giv	ving	examples,	the
	application	of	Raman	spectroscopy	in
	determining the structure of a molecule.				

Mention the essential condition for a (c) molecule to be Raman active.

UNIT-IV

explain Franck-Condon 6. (a) State and principle.

What do you mean by molar extinction coefficient? What information can be obtained from it?

Or

The intensity of $\pi \to \pi^*$ transitions is 10 to 100 times stronger than $n \to \pi^*$ transitions. Explain.

Define chromophore with example. (c)

UNIT-V

- Describe the ESR spectrum of-7. (a)
 - (i) a single electron in contact with a single proton;
 - (ii) methyl radical.

3

or oranges.

Discuss briefly the principle of ESR spectroscopy.

- (b) What is chemical shift? Explain why TMS is used as a reference substance in NMR spectroscopy.
- (c) Draw the high resolution NMR spectra of ethanol.

ing the control was a by rooks dynaction and be