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GROUP—A

[(a] Abstract Algebra
(b) Elementary Statistics ]

(a) Abstract Algebra
( Marks : 45 )
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Does the set Q of all rational numbers
form a group under the operation of
multiplication of rational numbers?
Give reasons to your answer.
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Show that the mapping f:Z—E
defined by f(x)=2x, VxeZ is an
isomorphism where Z and E are the
additive group of integers and even
integers respectively.
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If f is a homomorphism from a group G
to a group G’ with kernel K, then prove
that f is an isomorphism if and only if
K ={e}, where e is the identity element
in G.
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Define quotient group. Let Z be the
additive group of integers and
H={3x:x€Z}, then determine the
elements of the quotient group Z/H.
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What is the order of the group of all
€ven permutations of degree n?
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State Cayley’s theorem.
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subrings a

Intersection of two is

subring—prove it.
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Define ideal of a ring with an example.
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Define field and integral domain. Pr?ve
that every field is an integral domaift.
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If @ and b are two rational numbers,

then prove that F is a field where
F={1+bV2:a be Q}

(b) Elementary Statistics
( Marks : 35)
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What is the difference between simplé
event and composite event?
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Correlation coefficient is
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i usly.
Ten coins are thrown sumflltanzszoleast
Find the probability of getting
seven heads.
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[ (a) Discrete Mathematics
(b) Metric Space ]

(a) Discrete Mathematics

(Marks : 45)

—.(—.PAQ)%%W%WWI )

Write the denig)

of —I(‘LP A Q)
2
Peoamﬁwﬂw 4TS 41 |
Prepare the truth table for p <y Q
TR B trre T RIFRR IR
Sl
Lisif the Sententig)] Connectives with
€ir Symbo]g
"R oo 2rearq R, oyear
Using arithmetje Tepresentation, show
that
2
|= pPv =p
A ]|
Proye that
' 3
AoB ix 4 eq B
( Continued)

@

5
L) oo e el ﬁ?ﬁﬂj ] e oowing
Determine the validity of
argument :
p—-g r-q r=-p | )
¥ 3ferca & g 7 9o Wqﬁ;‘"tion?
" What do you mean by contradic
Give one example.

(11)

1+1=2
) U7 Q] ST o

Write True or False :
(i) SCSRFCH! (53 Wb CHifoR I.

Every chain is a lattice. . Em
(i) (92{a b, c}, c) T (D3, )

e o 1 b, c}, c) and

The two lattices (@{'a, , C},

(D3q, |) are isomorphic. .
ﬂm T S W\E" s stem.
Define lattice as an algebraic sy il
e IR iR TS ﬁmwmﬁvch:

R by = @ v RE

eterm - £ i

not :

(b)

(c)

=4
3+1%
I3 1 Rers g TI A ?

Is it a distributive lattice?
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If B is a Boolean algebra and a € B, then
prove that S={0, g a’, 1} is a Boolean
subalgebra of B.

(b) Metric Space
( Marks : 35)
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Define the discrete metric on a non-
empty set X.
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When a point is said to be an isolated
point of a subset in a metric space?
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dixy)=lx-yl VxyeR
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cora Ra TP A = [0, 2]3 M el a1 1+1=2

What do you understand by diameter of
a subset of a metric space? If d is metric
defined on R as

dix y)=lx-yl, YxyeR
then find the diameter of the subset
A=[0,2] of R.
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Let X be a complete metric space
and Y be a subspace of X. ThenY is
complete if and only if it is closed.

gb1 (i o~ S o1 g e S
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When is & mapping of one metric space
to another metric space said to be

continuous?

Let X and Y be two metric spaces- Prove
of X into Y is

that a mapping | o
¢ and only if S~ (G) is open

open in Y.
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