Total No. of Printed Pages—8

6 SEM TDC MTH M 1

2017

(May)

MATHEMATICS

(Major)

Course: 601

(A: Metric Spaces and B: Statistics)

Full Marks: 80

Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

A: Metric Spaces

(Marks : 40)

1. (a) The metric defined by

$$d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

is called _____.

(Fill in the blank) 1

2

(b) For a metric space (X, d), prove that the whole space X is an open set.

P7/555 (Turn Over)

For a metric space (X, d), prove that $d(x, y) \ge |d(x, z) - d(z, y)|$ for all $x, y, z \in X$

2. (a) Prove that each open sphere in a metric space X is an open set.

Or

Prove that arbitrary intersection of closed sets in a metric space X is closed.

Define boundary of a set. For a metric space (X, d), prove that

$$\partial A = \partial (X - A)$$
, where $A \subset X$

Define first countable space in a metric space (X, d). Prove that every metric space (X, d) is a first countable space.

- 3. (a) Define a Cauchy sequence.
 - (b) Prove that in a metric space X, every convergent sequence is bounded.
- Prove that the usual metric space (R, d) with d(R, d)with d(x, y) = |x - y|, $\forall x, y \in R$ is complete metric space. P7/555

Let (X, d) be a complete metric space and let $\{F_n\}$ be a decreasing sequence of non-empty closed subsets of X such that $d(F_n) \to 0$. Then show that the intersection

contains exactly one point.

For a metric space (X, d), let $Y \subset X$. Then show that if Y is separable and \overline{Y} (closure of Y) = X, then X is separable.

Let $\{x_n\}$ be a Cauchy sequence in a metric space (X, d). Prove that $\{x_n\}$ is convergent if and only if it has a convergent subsequence.

- 4. (a) Define a continuous function in a metric space (X, d).
 - Let (R, d) be a usual metric with $d(x, y) = |x - y|, \quad \forall x, y \in R.$ $f: R \to R$ by $f(x) = x^2$. Then show that fis not uniformly continuous.

P7/555

(Turn Over)

4

(Continued)

Let (X, d), (Y, ρ) and (Z, σ) be metric spaces. If $f: X \to Y$ and $g: Y \to Z$ are homeomorphism, then show $g \circ f: X \to Z$ is also a homeomorphism.

Or

Let (X, d) and (Y, ρ) be metric spaces and $f: X \to Y$ be a function. Then prove that f is continuous if and only if $f^{-1}(F)$ is closed in X whenever F is closed in Y.

- 5. (a) Define metric sequentially compact space.
 - For a compact metric space (X, d), show that closed subset Y of X is compact.

Or

Let (X, d) be a metric space and A be a compact subset of X, B be a closed subset of X, B be a closed subset of X such that $A \cap B = \emptyset$, then show that d(A, B) > 0.

B: Statistics

(Marks: 40)

- of classical limitation Write one 6. (a) probability.
 - What is the chance that a leap year (b) contain random will at selected 53 Mondays?
 - A problem in statistics is given to three students X, Y and Z whose chances of (c) solving it are $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved if all of them try independently?
 - If E_1 , E_2 , E_3 , ..., E_n are mutually disjoint events with $P(E_i) \neq 0 (i = 1, 2, ..., n)$, then (d) for any arbitrary event A which is a subset of $\bigcup_{i=1}^{n} E_i$ such that P(A) > 0, prove

that

$$P(E_i|A) = \frac{P(E_i)P(A/E_i)}{\sum_{i=1}^{n} P(E_i)P(A/E_i)}$$

(Turn Over)

1

2

3

P7/555

P7/555

2

5

Or

The chances that doctor X will diagnose a disease A correctly is 60%. The chances that a patient will die by his treatment after correct diagnosis is 40% and the chance of death by wrong diagnosis is 70%. A patient of doctor X, who had disease A, died. What is the chance that his disease was diagnosed correctly?

- 7. (a) If n = 10, $\bar{x} = 12$, $\sum x^2 = 1530$, find the coefficient of variation.
 - Find the standard deviation of the frequency distribution g

Class Interval	n below:				
Frequency	60-62	63-65	66-68	69-71	72-74
W. W. W.	3	18	42	27	8

8. (a) Can

40X - 18Y = 214 and 8X - 10Y + 66 = 0be the estimated regression equations of Y on X and X on Y respectively? Explain your answer with suitable arguments.

(b)	sons gave the following data about then
	height in inches:

Father 65 63 67 64 68 62 70 66 68 67 69 7										71		
Father	65	63	67	64	68	62	70	66	68	67	09	/ 1
acree!	65	00	0.		-	66	68	65	71	67	68	70
Son	68	66	68	65	69	00	00			alati		4

Calculate coefficient of rank correlation.

- conditions of the physical 9. Write (a) binomial distribution.
 - In a binomial distribution consisting of 5 independent trials, probabilities of (b) 1 and 2 successes are 0.4096 and 0.2048 respectively. Find the parameter p of the distribution.
 - For a Poisson distributed variable X, show that mean of X = variance of X = r, (c) where r is a parameter of Poisson distribution.
 - Discuss about the chief characteristics of normal distribution and normal (d) probability curve.

Or

P7/555

Show that Poisson distribution is a limiting form of binomial distribution.

P7/555

(Turn Over)

10. (a) Find the 3-yearly weighted moving average with weights 1, 4, 1 for the following series:

The state of the s	No.						
Year	1	2	3	4	5	6	7
Values	2	6	1	5	3	7	2

(b) The figures of annual production (in thousand tonnes) of a sugar factory are given below:

S are perow :										
Year	0010		the same			2016				
	2010	2011	2012	2012	2014	2015	2016			
Production			-012	2013	2014	201	100			
Location	70	75	90	91	95	98	100			
	A PROPERTY OF			71	50					

Fit a straight line trend by the method of least square.

* * *