Total No. of Printed Pages—12

6 SEM TDC MTH M 4 (A/B)

2017

(May)

MATHEMATICS

(Major)

Course: 604

Full Marks: 80
Pass Marks: 32/24

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

- (a) Financial Mathematics
 - (b) Operations Research
 - (a) Financial Mathematics

(Marks: 45)

- 1. (a) Define demand function and supply function.
 - (b) The supply and demand functions for a commodity are

$$q^{S}(p) = 12p - 4, q^{D}(p) = 8 - 4p$$

If an excise tax of *T* is imposed, then what are the selling price and quantity sold, in equilibrium?

(Turn Over)

2

2. Describe the Cobweb model.

Consider a market in which the supply and demand sets are

$$S = \{(q, p) \mid q = 3p - 7\}$$

$$D = \{(q, p) \mid q = 38 - 12p\}$$

Write down the recurrence equations which determine the sequence p_t of price, assuming that the operate suppliers according to the Cobweb model. Find the explicit solution given that $p_0 = 4$ and describe in words how the sequence p_t behaves. Write down a formula for q_t , the quantity on the market in the year t.

- 3. (a) Suppose the C(q) = 9 + 5q and the price function is cost P(q) = 6 - 0.01q. Then write the profit function $\pi(q)$.
 - The supply set S consists of pairs (q, p) such that 2q-5p=14 and a demand set D consists of pairs (q, p) such that 3q + p = 72. An excise tax T per unit is imposed. Determine when the revenue will be maximum.
- **4.** (a) Define elasticity of demand.
 - the competition and monopoly. difference between

Consider an efficient small firm with (c) the cost function

$$C(q) = q^3 - 10q^2 + 100q + 196$$

that can produce maximum of 10 units per week. Determine their-

- (i) fixed cost;
- (ii) profit function;
- (iii) startup point;
- (iv) breakeven point;
- (v) supply set.
- 1 Define saddle point. 5. (a)
 - If $f(x, y) = x^3 y^3 2xy + 1$, then find and classify the critical points of f. 5
 - Find the maximum value of the function (c)

$$f(x, y) = 6 + 4x - 3x^2 + 4y + 2xy - 3y^2$$

- Define a technology matrix. (a)
 - The supply function for a good is (b)

$$q^S(p) = ap^3 + bp^2 + c$$

for some constants a, b, c. When p=1, the quantity supplied is 1, when p=2, the quantity supplied is 11, when p = 3, the quantity supplied is 35. Find the constants a, b, c.

1558

4

3

3

4

4

(c) The matrix of return for an investor is

$$R = \begin{pmatrix} 1.05 & 0.95 \\ 1.05 & 1.05 \\ 1.37 & 1.42 \end{pmatrix}$$

Show that the portfolio $Y = (500 \ 10000 \ 1000)$ is riskless. What return is the investor guaranteed?

(b) Operations Research

(Marks: 35)

- 7. (a) State True or False:

 Operations research practioners can predict about the future events.
 - (b) What is OR? Write a short note on application of OR. 1+3=4

Or

Write a short note on the limitations of operations research.

- 8. (a) Define assignment problem.
 - (b) Explain the difference between a transportation problem and an assignment problem.

(c) Consider the problem of assigning five operators to five machines. The assignment costs are given below:

Operators

	I	II	Ш	IV	V
A	10	5	13	15	16
Machines C D	3	9	18	3	6
	10	7	2	2	2
	100000	11	9	7	12
	7	9	10	4	12
	C	B 3 C 10 D 5	A 10 5 B 3 9 C 10 7 D 5 11	A 10 5 13 B 3 9 18 C 10 7 2 D 5 11 9	A 10 5 13 15 B 3 9 18 3 C 10 7 2 2 D 5 11 9 7

Assign the operators to different machines so that total cost is minimized.

- 9. (a) Explain the concept of dynamic programming and the relation between dynamic and linear programming approaches.
 - (b) Use dynamic programming to solve the following linear programming problem:

Maximize $Z = 3x_1 + 5x_2$

subject to

$$x_1 \le 4$$

$$x_2 \le 6$$

$$3x_1 + 2x_2 \le 18$$
and $x_1, x_2 \ge 0$

P7/558

(Continued)

1/ 7/558

(Turn Over)

7

3

Or

Solve the following LPP by the method of dynamic programming:

Maximize $Z = 2x_1 + 5x_2$ subject to

$$2x_1 + x_2 \le 430$$

$$2x_2 \le 460$$
and $x_1, x_2 \ge 0$

10. (a) Fill in the blank:

programming is an extension of the linear programming in which feasible solution must have integer

- (b) Explain the basic difference between a pure and mixed integer programming
- Solve the following programming problem using Gomory's cutting plane method:

Maximize $Z = x_1 + 2x_2$ subject to

$$\begin{array}{c} 2x_2 \leq 7 \\ x_1 + x_2 \leq 7 \\ 2x_1 \leq 11 \end{array}$$

and $x_1, x_2 \ge 0$ and integers.

P7/558

(Continued)

P7/558

Or

Use Gomory's cutting plane method to solve the following problem:

Maximize $Z = x_1 - x_2$ subject to

$$x_1 + 2x_2 \le 4 6x_1 + 2x_2 \le 9 x_1, x_2 \ge 0$$

and are integers.

GROUP-B

(a) Space Dynamics

(b) Relativity

(a) Space Dynamics

(Marks: 40)

- Define spherical angle. 1.
 - Fill in the blank: Number of great circle through two (b) given points is ____, if the two points are not the extremities of a diameter.
 - Show that the sum of the three angles of a spherical triangle is greater than two (c) right angles but less than six right angles.

7

1

- (d) Prove the sine-cosine formula: $\sin b \cos C = \sin a \cos c - \cos a \sin c \cos B$
- In a spherical triangle ABC, if θ , ϕ , ψ be the arcs bisecting the angles A, B, C respectively and terminated by opposite sides, show that

$$\frac{\cot\theta\cos\frac{A}{2} + \cot\phi\cos\frac{B}{2} + \cot\psi\cos\frac{C}{2} = \\\cot a + \cot b + \cot c$$

Or

In a spherical triangle ABC, prove that $\frac{\sin^2 a + \sin^2 b + \sin^2 c}{\sin^2 A + \sin^2 B + \sin^2 C} = \frac{1 - \cos a \cos b \cos c}{1 + \cos A \cos B \cos C}$

- (a) What is astronomical latitude?
 - 1 Define celestial equator and observer's 1+1=2
 - What is the RA of the Sun when it is on the summer solstice?
 - Write short notes on any two of the (i) Hour angle $2 \times 2 = 4$

 - (ii) Equinoxes
- (iii) Elements of the orbit in space Discuss the ecliptical system. coordinate P7/558

If (α, δ) and (λ, β) are respectively the equatorial and ecliptic coordinates of a star, then prove that

 $\sin \beta = \cos \epsilon \sin \delta - \sin \epsilon \cos \delta \sin \alpha$ and $\tan \lambda = \frac{\sin \epsilon \tan \delta + \cos \epsilon \sin \alpha}{1 + \cos \epsilon \sin \alpha}$

where ϵ is the obliquity of the ecliptic. If H be the hour angle of a star of

declination δ when its azimuth is A and (f)H' when azimuth is 180°+A, then prove

$$\tan \phi = \tan \delta \frac{\cos\left(\frac{H'+H}{2}\right)}{\cos\left(\frac{H'-H}{2}\right)}$$

where ϕ is the latitude of the star.

- Define mean anomaly. (a) 3.
 - In one-body problem, deduce the equation $r = \frac{a(1-e^2)}{1+e\cos\omega}$, where a is (b) semimajor axis, e is the eccentricity, w is the true anomaly of the moving particle at any position (r, θ) .

Derive an expression for the position of a body in an elliptic orbit.

(Continued)

P7/EEQ

4

(Turn Over)

5

1

5

Establish the relation

$$\tan\frac{v}{2} = \sqrt{\frac{1+e}{1-e}} \tan\frac{E}{2}$$

where v is true anomaly and E is eccentric anomaly.

Or

Deduce the Kepler's equation

$$M = E - e \sin E = n(t - \tau)$$

(b) Relativity

(Marks: 40)

- 4. (a) State True or False: It is possible to send out signals with a velocity greater than the velocity of light.
 - Choose the correct answer: Frame S' is moving with velocity v along x-axis relative to a stationary frame Swith length l along x-axis. The length as observed in frame S' is

(i)
$$\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$$
 (ii) $l\sqrt{1-\frac{v^2}{c^2}}$

(iii) 1

 $(iv) \frac{l}{r}$

(c) State two postulates of special theory of P7/558

4

1

1

(Continued)

- Write short note on any one of the following:
 - (i) Clock paradox
 - (ii) Length contraction
- 5. Show that the inverse of a Lorentz transformation is also a Lorentz transformation.

Or

If u and v are two velocities in the same direction and V their resultant velocity given by

$$\tanh^{-1}\frac{V}{c} = \tanh^{-1}\frac{u}{c} + \tanh^{-1}\frac{v}{c}$$

then deduce the law of composition of velocities from this equation.

- $3 \times 2 = 6$ Answer any two of the following:
 - A particle with a mean proper life 1 μ sec moves through the laboratory at (a) 2.7×10^{10} cm/sec. What will be its life as measured by an observer in the laboratory?
 - A rod of length 1 m, when the rod is in a satellite moving with velocity 0.8c (b) relative to laboratory, what is the length of the rod as determined by an observer (i) in the satellite and (ii) in the laboratory?
 - Why is the velocity of light called fundamental velocity? (c)

(Turn Over)

6

- 7. (a) Choose the correct answer:

 The relation between momentum and energy is
 - (i) $E^2 = p^2c^2 + m_0^2c^2$
 - (ii) $E^2 = p^2c^2 m_0^2c^4$
 - (iii) $E^2 = p^2c^2 + m_0^2c^4$
 - (iv) $E^2 = p^2c^2 m_0^2c^2$
 - (b) What is space-like interval?
 - (c) Show that the rest mass of a particle of momentum P and kinetic energy K is

$$m_0 = \frac{P^2 c^2 - K^2}{2Kc^2}$$

1

1

3

3

 $\Im r$

Calculate the velocity at which the mass of a particle becomes 8 times its rest mass.

- (d) How much electric energy could theoretically be obtained by annihilation of 1 g of matter?
- 8. Answer any two of the following: $6 \times 2 = 12$
 - (a) Establish the Einstein mass-energy relation $E = mc^2$.
 - (b) Find the transformation laws of density in relativistic mechanics.(c) Calculate
 - (c) Calculate the rest mass of a particle whose momentum is 130/c MeV, when its kinetic energy is 50 MeV.

P7-2300/558 ***

6 SEM TDC MTH M 4 (A/B)