## 6 SEM TDC CHM M 1 (N/O)

2017

(May)

## CHEMISTRY

(Major)

Course: 601

## ( Physical Chemistry )

The figures in the margin indicate full marks for the questions

( New Course )

Full Marks: 48 Pass Marks: 14

Time: 2 hours

1. Choose the correct answer:

- 1×5=5
- Which one of the following is not true for a photochemical reaction? (a)
  - (i) Photochemical reaction involves absorption of light
  - The free energy change  $(\Delta G)$  of a photochemical reaction must be (ii) negative

P7/620

(Turn Over)

| (iii) | Temperature                           |
|-------|---------------------------------------|
|       | Temperature has very little effect on |
|       | the rate of photochemical reaction    |

- (iv) The intensity of light has a marked effect on the rate of a photochemical reaction
- Which of the following polymers is formed by step reaction polymerization?
  - (i) PVC
  - (ii) Polyethylene
  - (iii) Nylon-6,6
  - (iv) Polyaniline
- Chemisorption plays an important role
  - heterogeneous catalysis
  - (ii) homogeneous catalysis
  - (iii) both homogeneous and hetero geneous catalyses
  - (iv) None of the above
- The maximum number of phases that can be in equilibrium for a two component system at temperature and pressure is constant

  - (iii) 3

- P7/620 (iv) 4

- (e) A microcanonical ensemble consists of isolated systems each having
  - (i) same value of volume (V), and number of molecules (N) energy (E)
  - (ii) same value of volume (V), and number of molecules (N) chemical potential (µ)
  - of volume value (iii) same and chemical (T)temperature potential (µ)
  - volume of (iv) same value temperature (T) and energy (E)
- $2 \times 5 = 10$ 2. Answer the following questions:
  - What are the primary and secondary processes in a photochemical reaction?
  - Define degree of polymerization. The molecular weight of a sample of polyvinylchloride is 625000. Calculate the degree of polymerization.
  - one autocatalysis? Give 1+1=2 What is example.
  - Explain why fusion curve in water system has a negative slope whereas the sublimation curve has a positive slope.

2

- (e) Define thermodynamic probability. What is the relation between thermodynamic probability and entropy?
- 3. Answer any two the questions following: from 31/2×2
  - (a) State and explain Beer-Lambert law. Define molar extinction coefficient.

3+1/2=3

- Discuss the kinetics of dimerization of anthracene.
- What do you mean by quenching of fluorescence? chemiluminescence. Describe 11/2+2=3
- 4. Answer any one question from the following:
  - State the differences between addition polymerization step-reaction polymerization. Discuss various steps and mechanism of styrene initiated polymerization benzoyl peroxide at 60 °C. by 2+3
  - (b) (i) What is copolymerization? Define ratio of Mention monomers. different of copolymer formed in terms reactivity ratio. of
    - 1+1+2 (ii) What is Ziegler-Natta catalyst?

- 5. Answer any one question from the following:
  - (i) Write the important steps of (a) surface reaction.
    - catalyses? enzyme (ii) What are Discuss the effect of temperature on enzyme catalysis.
  - What is acid-base catalysis? Explain the theories of acid-base catalysis with 1+4=5 suitable example.
- the from any two questions Answer 41/2×2=9 following:
  - (i) Find the number of phases and number of components for the (a)  $1 \times 2 = 2$ following equilibria:
    - (1)  $H_2O(s) \rightleftharpoons H_2O(l) \rightleftharpoons H_2O(g)$
    - (2)  $NH_4C1(g) \rightleftharpoons NH_3(g) + Cl_2(g)$ ;

 $p_{\mathrm{NH}_3} = p_{\mathrm{Cl}_2}$ 

- (ii) What is triple point? Explain why more than one triple points are observed in the phase diagram of 1+11/2=21/2 sulphur.
- What do you mean by congruent melting point? Draw and explain the (b) phase diagram of a two-component melting compound. with system Comment on the stability of such 1+21/2+1=41/2 compounds.

P7/620

( Turn Over )

(c) Define cryohydric point. Discuss the phase diagram of KI-H<sub>2</sub>O system.

1+31/2=4

- 7. Answer any two questions from the following:  $3\frac{1}{2}x^{2^{2}}$ 
  - (a) Define partition function. Write the mathematical expression for translational partition function. Calculate the translational partition function for benzene in a volume of 1 m<sup>3</sup> at 25 °C.

1+1+11/2=31/

- (b) Derive the equation for the calculation of the molar entropy of an ideal monatomic gas.
- (c) From partition function of an ideal monatomic gas, show that molar heat capacity at constant volume,  $C_V = \frac{3}{2}R$ .