Total No. of Printed Pages—11

6 SEM TDC CHM M 7 (N/O)

2019

(May)

CHEMISTRY

(Major)

Course: 607

(Spectroscopy)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks: 48

Pass Marks: 14

Time: 2 hours

1. Choose the correct answer:

 $1 \times 5 = 5$

- (a) Symmetric top molecules have
 - (i) two equal moments of inertia and one different
 - (ii) all the three moments of inertia equal
 - (iii) all the three moments of inertia
 - (iv) all the moments of inertia zero

91748

(Turn Over)

- (b) The shift of an absorption maximum towards longer wavelength is known as
 - (i) hypsochromic effect
 - (ii) bathochromic effect
 - (iii) hyperchromic effect
 - (iv) hypochromic effect
- (c) The absence of absorption bands near 1600 cm⁻¹, 1580 cm⁻¹ and 1500 cm⁻¹ is a sure proof for the absence of
 - (i) aromatic ring
 - (ii) carbonyl group
 - (iii) —OH group
 - (iv) secondary amino group
- (d) The multiplicity of the signals in CH₃CH₂OCH₂CH₃ in NMR spectrum is
 - (i) two triplets
 - (ii) a triplet and a quartet
 - (iii) two singlets
 - (iv) two doublets

- (e) Using 4358 Å lines of mercury as the source of radiation, a Raman line was observed at 4447 Å. The Raman shift was
 - (i) 460 cm⁻¹
 - (ii) 89 cm⁻¹
 - (iii) 89×10⁻⁸ cm⁻¹
 - (iv) 460×10^{-8} cm⁻¹
- **2.** Answer any five of the following: $2 \times 5 = 10$
 - (a) What do you mean by fundamental vibrations and overtones?
 - (b) What is mutual exclusion principle?

 Explain with examples.
 - (c) The nuclei like ¹²C and ¹⁶C do not exhibit NMR spectra. Explain why.
 - (d) What do you mean by a good solvent in UV spectroscopy and what is its effect on absorption maximum?
 - (e) Explain the effects of change of solvents on $n \to \pi^*$ and $\pi \to \pi^*$ transitions.
 - (f) HCl molecule is microwave active.

 Explain properly.

UNIT-I

- 3. (a) Discuss the effect isotopic of substitution on the rotational spectra of a diatomic molecule.
 - (b) In the absorption rotational spectrum of CO, the first line has a wave number of 3.8424 cm⁻¹. Calculate the bond length between C and O atoms.

UNIT-II

- Show that the frequency of the absorbed radiation in pure vibrational spectra is equal to the fundamental frequency of vibration v₀ of the molecule.
 - (b) Sketch the normal modes of vibration of a linear triatomic molecule AB2 and predict the IR active bands.

Write a short note on fingerprint

The force constant of HF is listed at 880 cm⁻¹. At what wave number is the fundamental $v = 0 \rightarrow v = 1$ vibrational absorption expected?

5. (a) What are Stokes and anti-Stokes lines? Explain why the anti-Stokes lines are weaker than that of Stokes lines.

UNIT-III

Discuss about the rotational Raman spectra in linear molecule.

Or

Write any three differences between Raman spectra and infrared spectra.

UNIT-IV

- the terms chromophores, 6. (a) auxochromes, bathochromic shift and Describe hypsochromic shift giving examples.
 - Write the selection rules for electronic transitions.

Or

Explain why ethanol is a good solvent for UV measurement but not for IR.

P9/748

(Continued)

(Turn Over)

3

3

UNIT-V

7. (a) Discuss briefly the principle of NMR spectroscopy.

Or

What is chemical shift in NMR spectroscopy? Mention the factors that affect chemical shift.

2+2=4

(b) Explain why TMS is used as internal standard in NMR spectroscopy.

Or

Describe the ESR spectrum of a single electron in contact with a single proton.

(c) Describe briefly spin-spin relaxation process.

P9/748

2

2